

ERSITYOF

In-Field Applications of an Autonomous Underwater Vehicle Magnetometer for Munitions and Explosives of Concern Detection

& Environment

College of Earth, Ocean,

Carter DuVal and Arthur C. Trembanis

University of Delaware, School of Marine Science and Policy, Newark, DE, United States

SAGEEP 28 March 2018

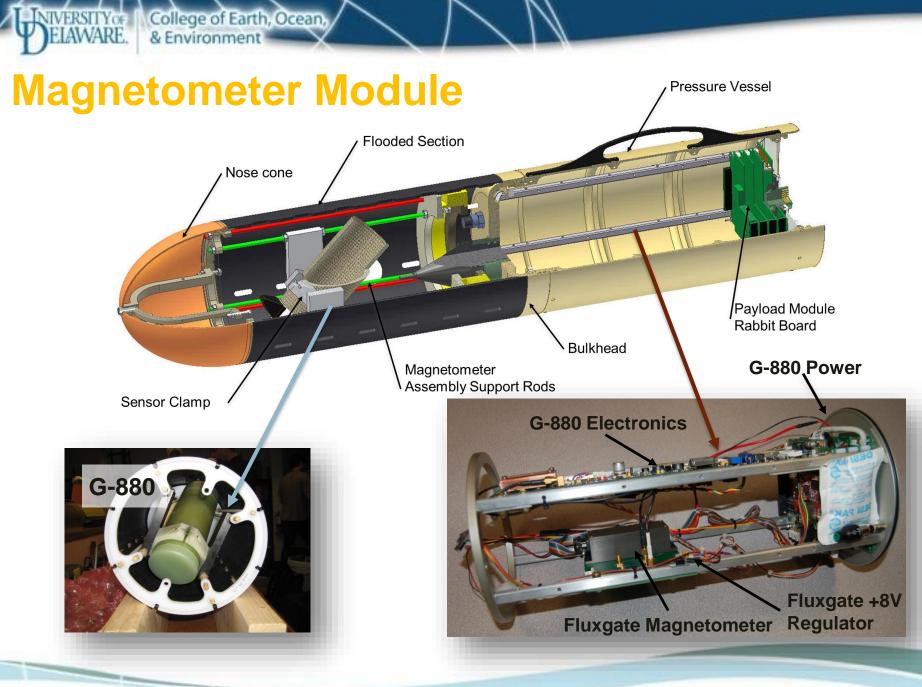
https://www.boem.gov/Munitions-and-Explosives-of-Concern-Survey-Methodology-and-In-field-Testing-for-Wind-Energy-Areas-on-the-Atlantic-Outer-Continental-Shelf/

ESTCP: AUV MEC Detection System

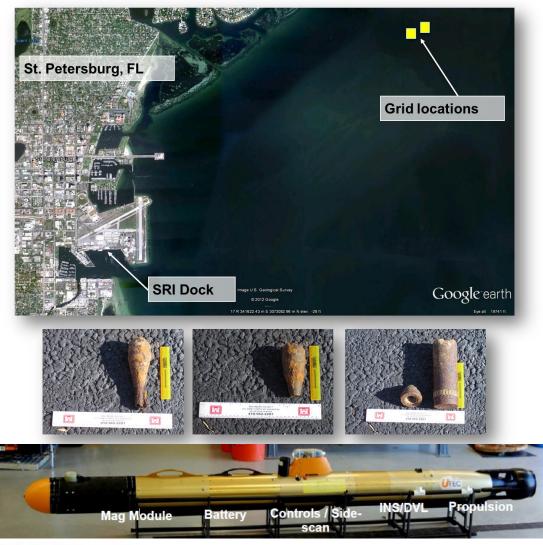
- Integrate a commercially available modular AUV with a sensitive total field magnetometer for MEC detection
 - Perform magnetic noise compensation to remove AUV platform and electrical current interference
 - Deploy and evaluate the system at a demonstration site

College of Earth, Ocean,

& Environment


IVERSITY OF

• Platform - Teledyne Gavia autonomous underwater vehicle (AUV)

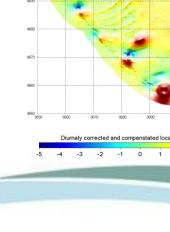


- Magnetometer Geometrics G880 Self-oscillating split-beam Cesium Vapor
 - 10 Hz sampling
 - Noise: 0.004 nT per \sqrt{Hz}
 - Range: 17,000 nT to 100,000 nT

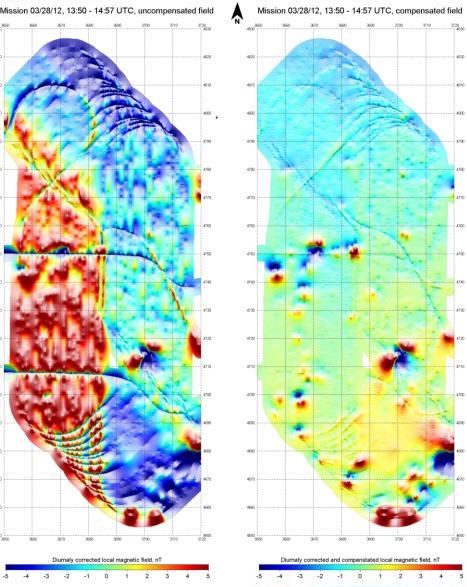
Demonstration Site: Tampa Bay

College of Earth, Ocean,

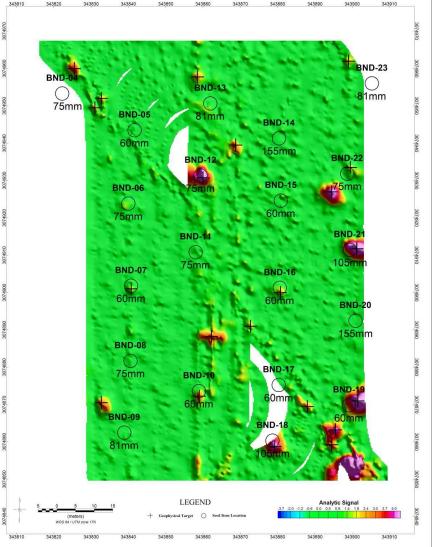
& Environment


- Flat mud bottom
- Established two 100m x 100m underwater test sites using inert munitions (60mm mortar – 155mm shell)
 - 1 calibration grid (known)
 - 1 blind grid (unknown)
- Demonstrate system and evaluate performance against pre-determined quantitative and qualitative metrics
 - MR201002-DR

Compensation Missions


& Environment

College of Earth, Ocean,


- Improvement ratios (IRs) ranged from 5.1 to 7.6 (cal grid) and 11 to 12.4 (blind grid)
- Largest magnetic distortions correlated with vehicle pitch and heading
- Current flow contributes to long term and immediate (battery switch) changes in the magnetic signature of the vehicle
 - Compensate for individual battery modules

5

Blind Survey Results

College of Earth, Ocean,

& Environmer

VERSITY OF

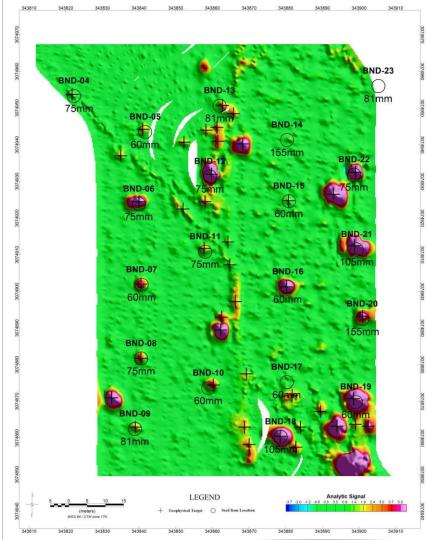
- Mission Design
 - 2m altitude, 2m line spacing*
 - 19 seed items (60mm, 81mm mortar, 75 and 155 shell)
- Two missions
 - 8/19 and 11/19 detections
- Navigation seed offsets
 - Mission 1 1.57m avg., <2.66m overall
 - Mission 2 1.32m avg., <2.61m overall

*Vehicle transect spacing limitations

Blind Survey Results

Mission Design

VERSITY OF

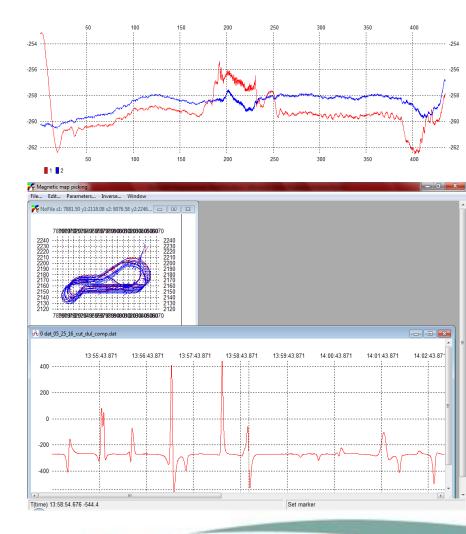

- 1.5m altitude, 2m line spacing*

College of Earth, Ocean,

& Environmen

- 19 seed items (60mm, 81mm mortar, 75 and 155 shell)
- Two missions
 - 17/19 and 14/19 detections
- Navigation seed offsets
 - Mission 1 0.7m avg., <1.61m overall
 - Mission 2 1.65m avg., <2.72m overall

*Vehicle transect spacing limitations


Improvements Resulting from ESTCP

Software update to allow for finer line spacing (<2m)

College of Earth, Ocean,

& Environme

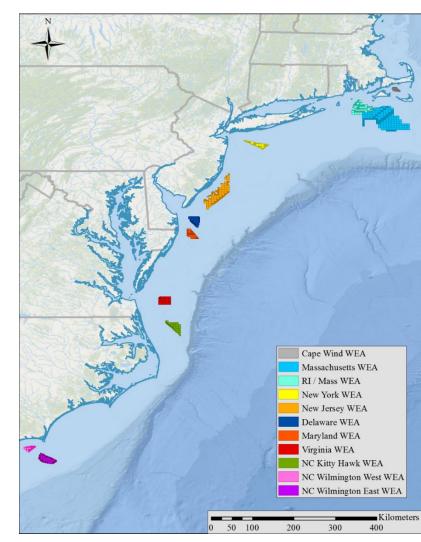
- Surrogate position offsets attributed to line spacing
- GPS upgrade for better initial and post-mission vehicle positioning
 - L1/L2 GPS receiver
- Magnetometer module material refit
 - Better IR for compensation
- New batteries
 - Less noise and longer duration
- Data processing pipeline established to improve user "friendliness"

BOEM MEC Study 2016

Support the Bureau of Ocean Energy Management (BOEM) to develop guidance:

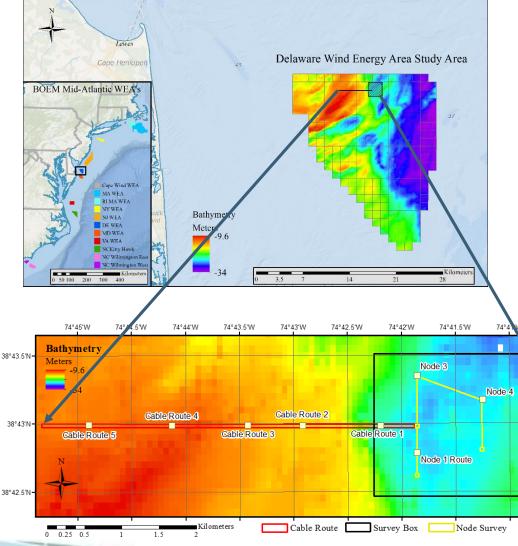
College of Earth, Ocean,

& Environme


WARF

Identifying potential MEC type and distribution in Atlantic OCS Wind Energy Areas (WEA)

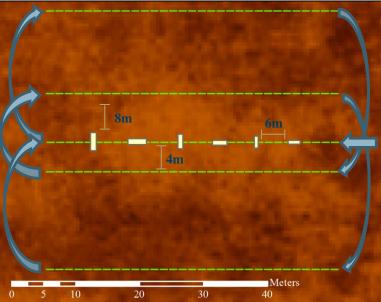
Investigating and recommending methods/technologies for MEC detection in OCS WEA


> In-field verification of recommended methods/technologies

Investigation of munitions mobility / burial following storm activity on the OCS

https://www.boem.gov/Munitions-and-Explosives-of-Concern-Survey-Methodology-and-In-field-Testing-for-Wind-Energy-Areas-on-the-Atlantic-Outer-Continental-Shelf/

Study Area


- Located within two lease blocks of DE WEA
 - Water depth of 13-25 m
 - Variety of sediment types, depth, and slope
- Search area
 - Replicates offshore wind farm
 - 2 x 2km survey area composed of five wind turbine "node" sites
 - 5 km cable route simulating landfall cable from WEA

Surrogates and Seeding

College of Earth, Ocean,

- Industry Standard Objects (ISO) objects the present similar acoustic/magnetic signature to munitions
 - Composed of four surrogate sizes
 - 8- x 36-inch pipe (8-inch artillery shell)
 - 6- x 24-inch pipe (155 mm artillery shell)
 - 4- x 12-inch pipe (105 mm artillery shell)
 - 2- x 8-inch pipe (60 mm mortar)
 - Established instrument verification strip (IVS) for daily instrument tests
- 62 total surrogates at 8 sites

Survey Methodology

74°45'W

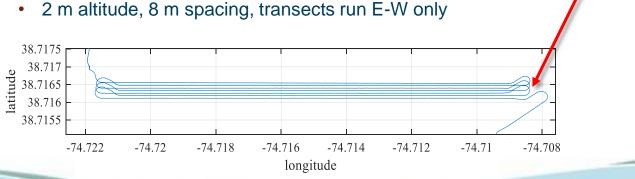
38°43.5'N

38°43'N

38°42.5'N

74°44 5'W

74°44'W

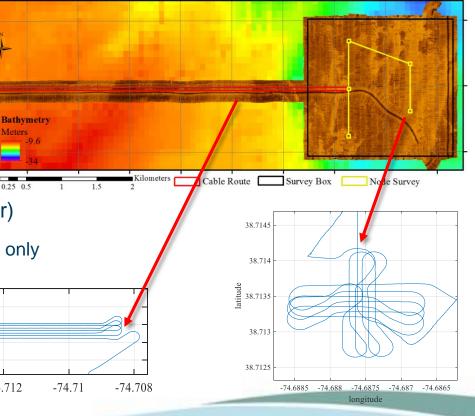

74°43 5'W

74°43'W

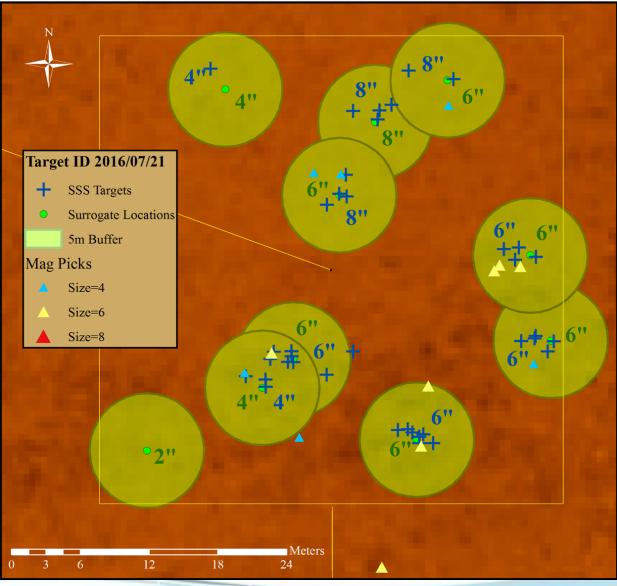
- Wide Area Assessment (WAA) >100% coverage
 - Provides contextual information on bathymetry, seabed texture / sediment distribution
 - Identify obstructions to AUV operations
 - Identify ISOs?

VERSITY OF

- Detailed AUV Sonar / Magnetometer Survey
 - Node Route Missions (40x40m)
 - 2 m altitude, 8 m spacing
 - Transects run N-S, and E-W
 - Cable Route Missions (1 x 0.05 km corridor)



74°42 5'W


74°42'W

74°41 5'W

74°41'W

AUV Survey Results

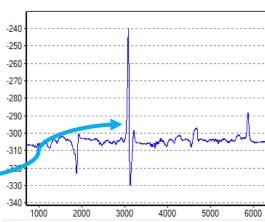
College of Earth, Ocean,

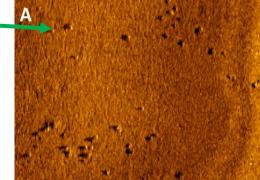
& Environmen

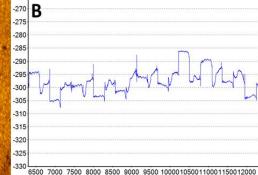
IVERSITY OF

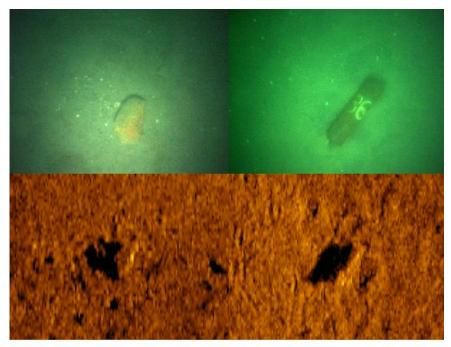
- Better performance of target detection of ISO in side-scan sonar (SSS)
 - All 6 inch (155mm) or larger ISO detected SSS
 - Detection rate by magnetometer < 50%
- SSS also proved better for target size estimation
 - Tendency to underestimate target size in magnetometer

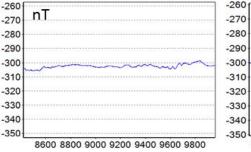
Complications


College of Earth, Ocean,


& Environment


- Target size estimation
 - Orientation of ISO relative to sonar
 - Distance between ISO and magnetometer
- "Noise"
 - Non-ISO targets on the seafloor
 - Fishing gear (Mag)
 - Biology (SSS)
 - Vehicle navigation issues
 - Issue settling into constant altitude (B)

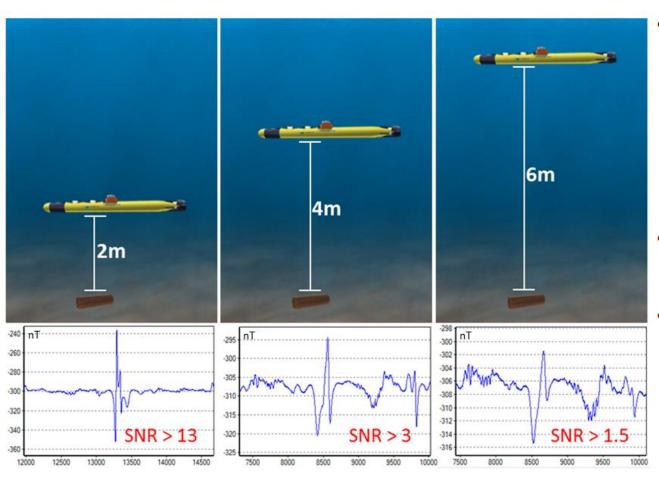




Combined Sensors

College of Earth, Ocean,

& Environmen



- Individual sensors not as effective as combined
- Magnetometer can discern ISO from debris / geology in side-scan data
- Reanalysis of data
 - Combination of side-scan and magnetometer data
 - Improved target size estimation

Region	Side-scan Sonar Alone	Magnetometer Alone	Combined Reanalysis
Node 1 Route	10	1	14
Node 3	18	3	23
Node 4	19	6	27
Total	47	10	64

Simulated Burial

- Simulated burial at Node 3
 - 4 m altitude (2m burial)
 - 6 m altitude (4m burial)
- Able to detect 155 mm ISO at all altitudes
- Increase in altitude significantly reduced signal to noise
 - Magnetic signal drop

 cube of distance
 between sensor and
 object

BOEM 2017

VERSITYOF

 Following the July 2016 in-field verification, several storm events occurred in the vicinity of the study area

College of Earth, Ocean,

& Environment

- Additional field effort undertaken to reacquire the surrogates and determine whether:
 - Surrogates became mobile during energetic conditions
 - Surrogates underwent *in situ* scour and burial during energetic conditions, or
 - No surrogate mobility or burial occurred.
- Follow up study also tested several recommendations resulting from the 2016 field effort

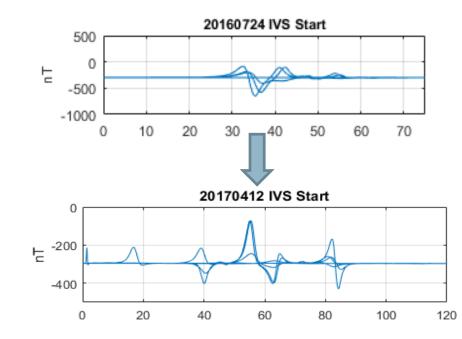
Performance

NIVERSITYOF

AWARE

Based on 2016 recommendations

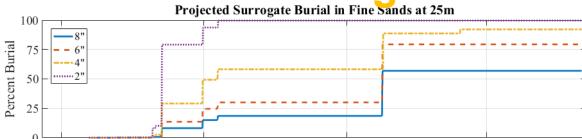
& Environment

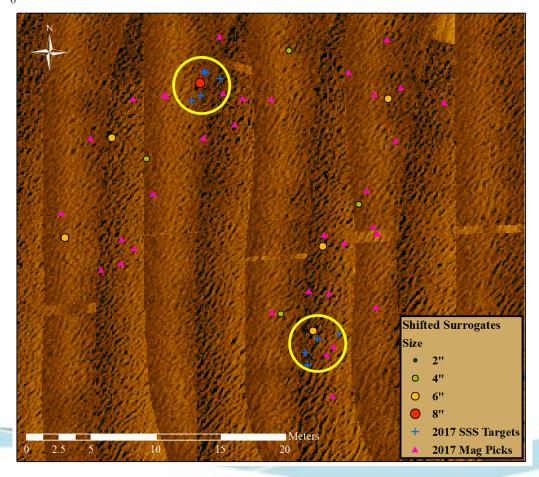

- Re-designed IVS to reduce signal overlap by increasing ISO spacing
 - From 6m 15m

STREET, STREET

 Decreased mission spacing from 8m to 4m NS-EW

College of Earth, Ocean,


• Led to four-fold increase in magnetic picks at 2m altitude



Year	Altitude	Spacing	N-S	E-W	Total Magnetometer Picks
2016	2	8	Yes	Yes	8
2016	2	4	Yes	No	8
2016	4	8	Yes	Yes	7
2016	4	4	Yes	No	7
2016	6	4	Yes	No	7
2017	2	4	Yes	Yes	34
2017	6	4	Yes	Yes	19

VERSITYOF

Surrogate Burial

- ONR Mine burial studies provide useful insight into ISO burial
 - Trembanis et al. 2004 model for mine scour / burial
 - Incorporated bedform impedance of burial
- Observations
 - Near total burial of surrogates in fine sands
 - Strong agreement with models
 - Magnetometer able to detect buried / obscured ISO

SERDP: Munitions Mobility

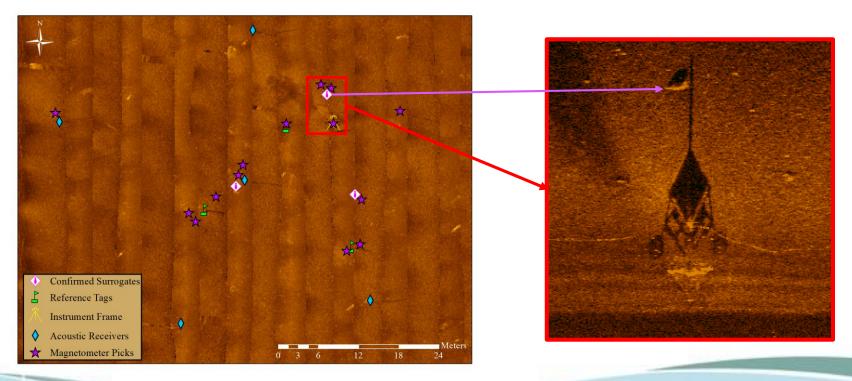
College of Earth, Ocean,

 Using VEMCO acoustic tags to track surrogate munitions in DE Bay

& Environmen

- Mobility or burial in muds?
- AUV Magnetometer Surveys
 - Repetitive side-scan sonar and magnetometer surveys will be conducted and compared to VPS tracking results.
- Provides extra tracking mechanism should the surrogates become buried too deep for acoustic tracking

SERDP: 2017 Field Test


College of Earth, Ocean,

Test mission – 2m Alt, 4m spacing

& Environmen

VERSITYOF

- Separate NS, EW missions to improve positioning
- Difficulty detecting smaller munitions due to "noise" from close proximity of VPS and moored instruments
 - Currently testing lower altitude mission plans to compensate

College of Earth, Ocean, & Environment

Still to come... 2018 Spring Deployment

THIS MONTH

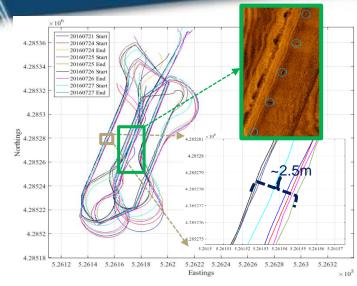
NOR'EASTERS

ELAWARE.

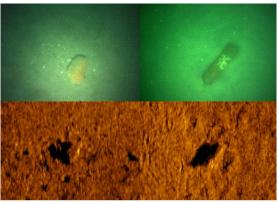
Wunderground.com

And in case of the local division of the loc

KE. & Environment


College of Earth, Ocean,

Conclusions


- Mounting magnetometer to AUV allows for near-bed, *repeatable*, high-precision surveying for MEC
 - Continued development has improved performance and "user friendliness"

Year	Altitude	Spacing	N-S	E-W	Total Magnetometer Picks
2016	2	8	Yes	Yes	8
2016	2	4	Yes	No	8
2016	4	8	Yes	Yes	7
2016	4	4	Yes	No	7
2016	6	4	Yes	No	7
2017	2	4	Yes	Yes	34
2017	6	4	Yes	Yes	19

- Multi-sensor fusion for MEC detection
 - No one sensor is fully capable of detection in all cases
 - "The whole is greater than the sum of the parts"

- Importance of in-field testing
 - Modify mission design for improved performance based on mission goals

nT	-260 -270 nT	
0	-280	
0	-290	
10	-300	
0	-310	
:0	-320	
0	-330	
0	-340	

Thank You

Please review the full BOEM report:

& Environment

College of Earth, Ocean,

https://www.boem.gov/Munitions-and-Explosives-of-Concern-Survey-Methodology-and-In-field-Testing-for-Wind-Energy-Areas-on-the-Atlantic-Outer-Continental-Shelf/

• Thanks to:

IVERSITY OF ELAWARE

- BOEM M16PC00001
- ESTCP MR-201002
- SERDP MR-2730
- Geoff Carton
- Margo Edwards
- Mark Rognstad
- Christian Briggs
- Sonia Shjegstad
- Mikhail Tchernychev
- George Tait
- Kenny Haulsee
- Capt. Kevin Beam

STREET, STREET

- Tim Pilegard

Munitions and Explosives of Concern Survey Methodology and In-field Testing for Wind Energy Areas on the Atlantic Outer Continental Shelf

OCS Study BOEM 2017-063