Dynamic AGC Methods for Cost Effective Quality Assurance and Control

Jon Miller¹, Mike Gunnels¹, Fridon Shubitidze¹, Joe Keranen¹, Tanya Vander Vis², Emily Snyder², Eric Tow²

¹White River Technologies, Inc. ²TerranearPMC

SAGEEP 2023

QA vs. QC Seeding for AGC

Quality Assurance:

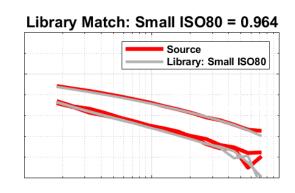
- Tests the system (equipment, software, personnel)
- Seeds placed at sub-maximal depths
- Verifies the Geophysical Classification Organization (GCO) is following the procedures
- Usually performed by a third-party contractor or the Government

Quality Control:

- Tests the performance
- Seeds placed at or near maximal depths

white river

- Verifies the planned operating envelope (size, depth, density) is achieved
- Performed internally by the GCO contractor


QA Seeding: Why Use AGC?

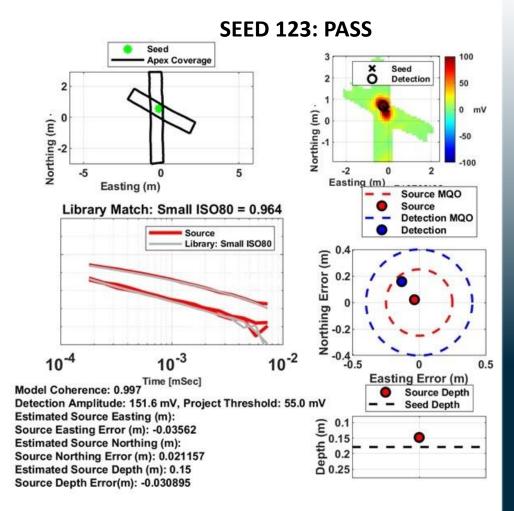
Quality Assurance:

- Failures likely indicate improper procedures (e.g., data collection, data processing, equipment setup)
- Result in a <u>STOP WORK</u> order and notification to the Accrediting Body (AB) during RCA and prior to CA implementation
- CA's may involve modifying Standard Operating Procedures

Using AGC to verify QA seed emplacement ensures the QA program is implemented correctly.

Quality Control:

Failures also indicate unexpected site conditions (e.g., environmental noise, terrain, geology, target density etc.)


white river

- Work can continue during RCA
- CA's may require adapting procedures for the site (e.g., data processing parameters, data collection procedures, etc.)

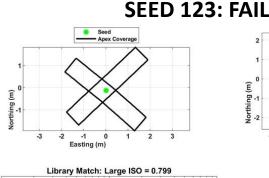
QA Seeding: Why Use Dynamic AGC?

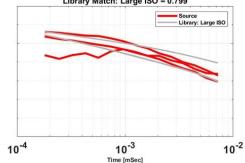
Dynamic AGC for QA Seed Verification:

- It is fast (1 2 minutes per seed)
- No static backgrounds needed
- Samples the local background
- Provides <u>detection</u> metrics in addition to classification metrics
- Field team can verify
 Measurement Quality Objectives
 (MQOs) are achieved on the spot
- Clean locations can be mapped and identified by the field team
- Cost-effective: ~<u>25%</u>* of total project costs

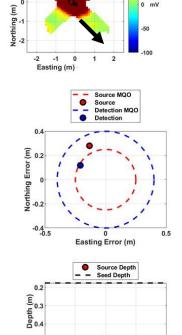
In-Field Verification

Confirm MQOs on the spot:


- Seeds often emplaced in remote areas or time restricted Right of Entry (ROE)
- Vegetation removal may not be completed yet
- Need to stay in synch with Remedial Action (RA) schedule
- Avoid returning by confirming MQOs achieved in real-time



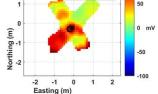
In-Field Verification


Address MQO failures on the spot:

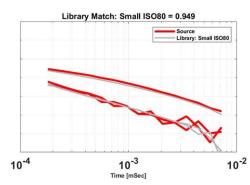
- Ground truth error inaccurate depth or GPS measurement?
- Does the seed need to be moved too close to another anomaly?



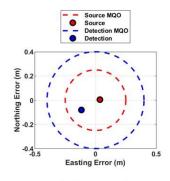
Model Coherence: 0.962 Detection Amplitude: 384.7 mV, Project Threshold: 55.0 mV Estimated Source Easting (m): Source Easting Error (m): -0.13336 Estimated Source Northing (m): Source Northing Error (m): 0.28009 Estimated Source Depth (m): 0.49 Source Depth Error(m): 0.31152

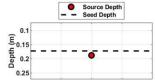


X Seed O Detection



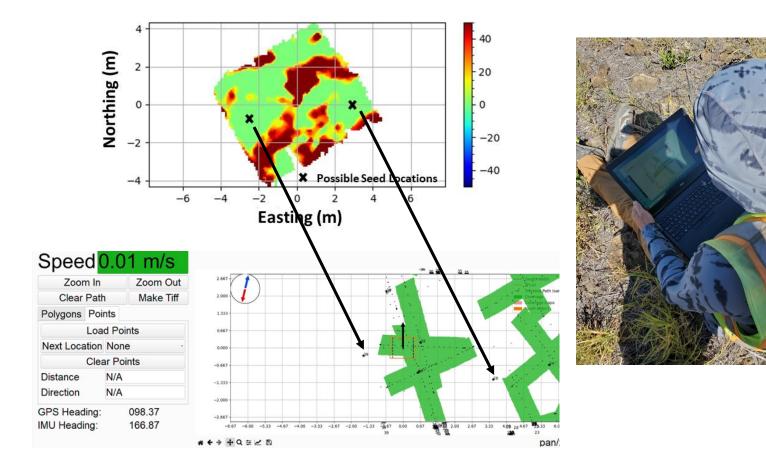
SEED 123: PASS




white river

technologies

Model Coherence: 0.972 Detection Amplitude: 116.7 mV, Project Threshold: 55.0 mV Estimated Source Easting (m): Source Easting Error (m): 0.036396 Estimated Source Northing (m): Source Northing Error (m): 0.045488 Estimated Source Depth (m): 0.19 Source Depth Error(m): 0.015464

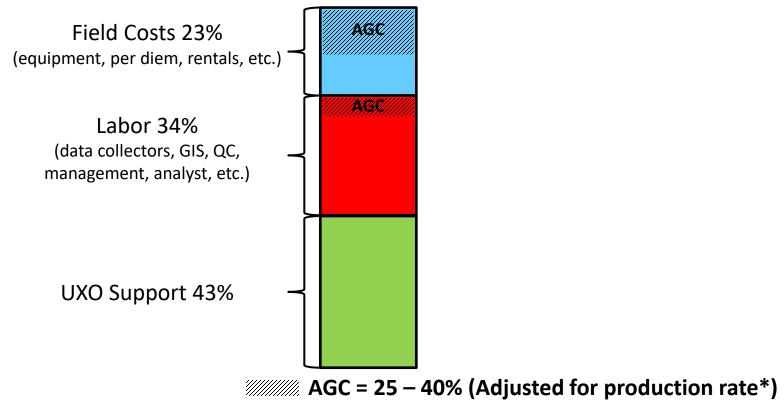


QA seeds should pass with <u>1-Target</u> Model

Location Selection

Locate clean background areas for seed location:

- Perform mini-survey to identify best location
- Identify geology or other clutter that may be difficult for analog sensors
- Find possible seed locations and load into sensor navigation display

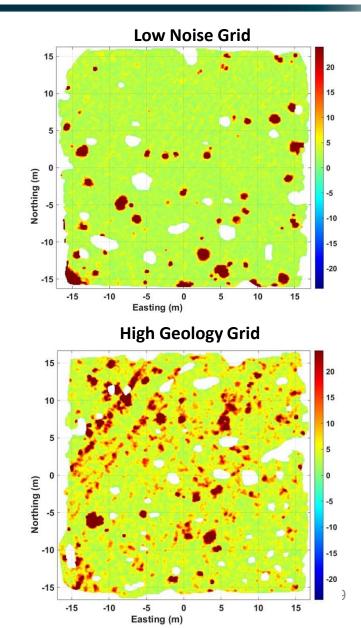

white river technologies

Dynamic-Cued AGC Value

Cost Benefit of AGC:

- Adding AGC to QA seeding is a relatively small percentage of overall cost
- Provides confirmation that the QA program is implemented correctly

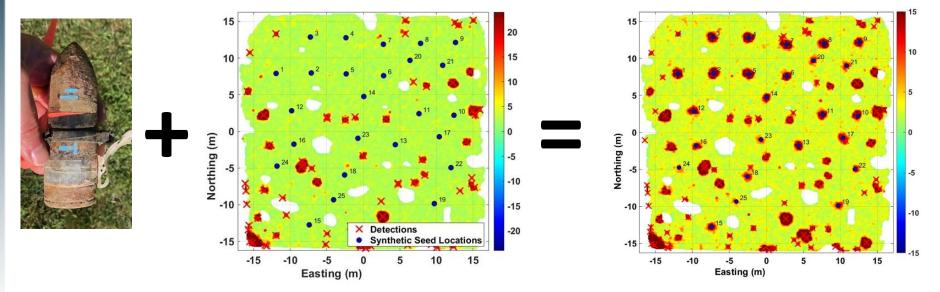
QA Seeding Per Seed Cost Breakdown



* AGC impact on QA seeding production rate is estimated to be 10 – 33% based on sample of 3rd party projects

Synthetic Seeding: Augmenting The QC Program

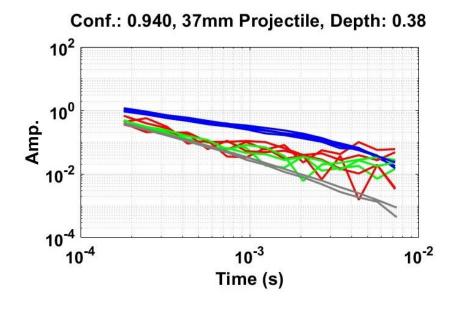
Benefits of Synthetic Seeding for QC:

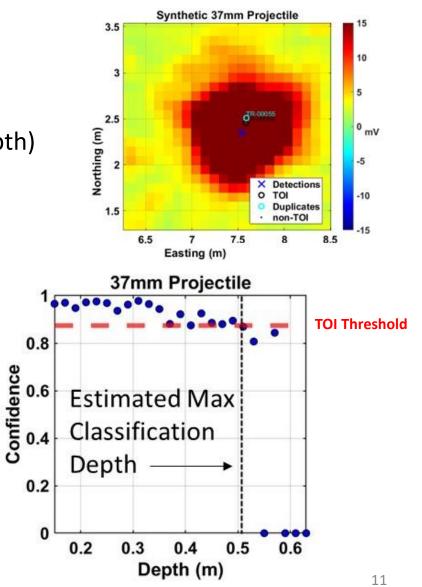

- Implemented on real data collected on the project site
- Captures the site-specific variables: environmental noise, terrain effects, geology, operator effects
- Can be used to rapidly populate a grid with a variety of seeds without the cost of excavation and survey
- Can be distributed over a site to capture variations in target density, geology, or other site features
- Provides further verification of operating envelope and identifies any limitations or exclusions (i.e., SRA's)

Synthetic Seeding Process

Implementing synthetic seeding:

- Choose a grid
- Choose TOI
- Choose depth range
- Choose locations

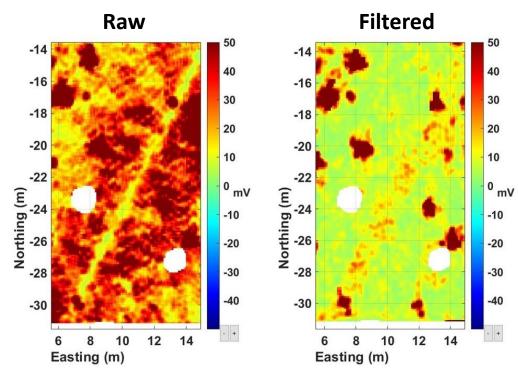


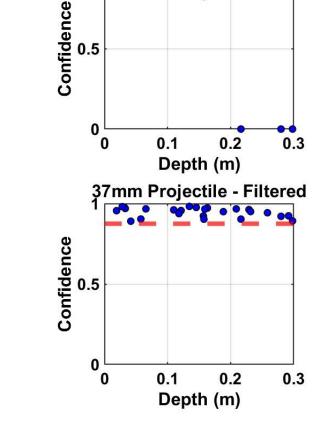

white river technologies

Synthetic Seeding Analysis

Analysis:

- Identify source(s)
- Evaluate TOI/non-TOI confidence
- Confirm operating envelope (max depth)
- Validate TOI threshold
- Delineate SRA's




white river

Synthetic Seeding Test Cases

Validate Site-Specific Parameter Settings:

- Environmental noise filters
- Geology filters
- Target picking criteria (high density areas)

37mm Projectile

Power Line Noise Example

white river

Summary

Dynamic AGC for QA Seeding:

- Dynamic AGC is a worthwhile investment for QA projects
- Increases costs 25% 40%, but ensures the QA program is implemented effectively
- Limits future unnecessary QA seed failures, which benefits the RA contractor, the Government, and the stakeholders

Dynamic AGC for QC Synthetic Seeding:

- Cost effective way to significantly increase sample size
- Verifies operating envelope (depth, density, etc.)
- Validates changes in processing parameters (filters, target selection, etc.)

white river

Acknowledgments

3rd Party AGC QA Seeding Supported By:

- USACE Albuquerque
- USACE Huntsville
- USACE Honolulu

Data Sets For Synthetic Seeding Provided By:

- Tetra Tech
- Weston