Classification of Small TOI in Highly Cluttered Areas

Fridon Shubitidze, *Dartmouth College*/ White River Technologies, Benjamin Barrowes, ERDC CRREL, Irma Shamatava, White River Technologies, e-mail: <u>fridon.shubitidze@dqartmouth.edu</u> e-mail: <u>Benjamin.E.Barrowes@erdc.dren.mil</u> e-mail: <u>shamatava@whiterivertech.com</u>

Outline

- ESTCP demo site at Fort Ord, CA
- EMI data inversion and classification approaches
- Ft. Ord TOI-s
- Results
 - ROC curves
 - Lessons learned
 - Comparisons between classification performances
- Conclusions

ESTCP demo site at Fort Ord, CA

Objectives:

- Classify all large munitions, such as 155mm projectiles, to a depth of 2 feet.
- Demonstrate if all TOI can be confidently classified within low to highest metal anomaly density areas at Fort Ord, CA.

Fort Ord Soil

- Consists marine sandstones with iron concentrations.
- No Noticeable impact on the EMI sensor data .

Fort Ord, CA TOI

Main goal

- Classify all large (>106 mm) TOI to a depth of 2 feet.
- Keep at least 90% clutters in ground

Secondary goal:

Classify all TOI-s. Keep at least 75% clutters in ground

ΤΟΙ	20 mm	ISO	37mm	35 mm	40mm	60 mm	ISO M	75 mm	81 mm	105mm	4.2 inch	155 mm
#	3	4	11	3	87	1	7	185	3	1	3	33

EMI sensor

- > The sensor has $3 T_x$ -s & $7 R_x$ cubes
- > Multiple angle illumination
- Good spatial resolution
- Operates in both cued and survey modes
- Receives vector field

T_x coils: 3 orthogonal 1 m × 1 m rectangular loops Receivers: 7 tri axial receiver cubes

Target density at Fort Ord, CA

Multi targets

Forward Models

ONMVS

The scattered EMI field is approximated as magnetic field from groups of interacting dipoles using an orthonormalized function expansion:

$$\mathbf{H}(\mathbf{r}) = \sum_{q=1}^{Q} \overline{\psi}_{q}(\mathbf{r}) \cdot \boldsymbol{b}_{q},$$

where

$$\overline{\overline{\psi}}_{q}(\mathbf{r}) = \overline{\overline{G}}_{q}(\mathbf{r}) - \sum_{k=1}^{q-1} \overline{\overline{\psi}}_{k}(\mathbf{r}) \cdot \overline{\overline{A}}_{qk};$$

First it determines b_q from the measured data without solving a linear system of equations, then it backs up m_i

> Uses total ONVMS/effective polarizabilities for classification

Multi dipole mode

The scattered EMI field is approximated as superposition of magnetic fields from each individual dipoles, using the Green's dyadic function:

$$\mathbf{H}(\mathbf{r}) = \sum_{i=1}^{N_v} \overline{\overline{G}}_i(\mathbf{r}) \cdot \boldsymbol{m}_i$$

where

$$\overline{\overline{G}}_{i}(\mathbf{r}) = \frac{1}{4\pi R_{i}^{3}} \left(3\overline{R}_{i} \ \overline{R}_{i} \ -\overline{\overline{I}} \right) ; \ \overline{R}_{i} = \mathbf{r}_{i} - \mathbf{r}$$

- *m*_i are determine from the measured data by solving a linear system of equations.
- Uses individual dipoles for classification

Data inversion

Fort-Ord, CA classification result

The primary objective : Classify all large munitions, such as 155mm projectiles, to a depth of 2 feet.

- The primary objective was achieved.
- At the dig stop point classification analyst was able to achieve:
 - ➤ 100 % efficiency
 - > 90 % false positive rejection rate.

Extracted Classification features for Fort-Ord, CA Large TOIs to a depth 2 feet

Inversion's Robustness

Time [µ sec]

Fort-Ord, CA classification result

The secondary objective : Classify all type munitions within low to highest metal anomaly density areas.

- All, but three small, TOIs were classified correctly.
- At the dig stop point classification analyst was able to achieve:
 - ➢ 99.2 % efficiency
 - ➢ 76 % false positive rejection rate.

Leeson 1: Placement of a sensor near to an anomaly continuous to be a problem Anomaly #10738

Leeson 2:Complete library is needed Anomaly #20504, 20633

Lesson 3. Documenting the intrusive results is an important

Cost Savings

Conclusions:

- The advanced classification methods are applicable for highly cluttered sites.
- Our approach was able to classify all large TOI as well as majority of small TOI on the site.
- There were three false negatives, which were due to
 - sensor-to-target separation distances;
 - insufficient library data;
- The independently scored classification results showed that our classification approach was able to provide superior classification result.

Acknowledgments:

This work was supported by the ESTCP Project # MR-201227.