COMPLEX SEED SCENARIOS – DOES AGC WORK AS ASSUMED IN MULTISOURCE SETTINGS?

Case Study from Former Fort Huachuca

Jennifer Weller and Kyle Lindsey

SAGEEP Tuesday, April 4, 2023

US Army Corps of Engineers®

www.jacobs.com | worldwide

Agenda

- 1. Overview of Fort Huachuca project
- 2. Summary of complex seeds
- 3. Complex seed classification challenges
- 4. Investigation and analysis
- 5. In-depth analysis of single seed pair
- 6. Conclusions, implications, USACE perspectives and final thoughts

Overview of Former Fort Huachuca Project

- RA over 548-acre MRS
- Jacobs contracted to perform thirdparty validation seeding, included:
 - 1. Placing over 1,000 seeds
 - Small ISO80s
 - Horizontal orientation
 - Two depths: 0.15 m (6 in) or 0.08 m (3 in) bgs
 - 2. Cued survey with MM 2x2 to ensure seeds detectable and classifiable
 - Measurements had to achieve standard cued metrics
 - Achieve decision statistic of ≥ 0.9000

Complex Seed Summary

- 100 seeds (50 pairs) emplaced in a "complex" scenario
 - Complex = two ISOs placed as a pair near each other
- Goal provide USACE data to monitor RA contractor's performance in multisource scenarios
- Constraints from Seed Plan and QAPP:
 - Seeds not placed one on top of other
 - Distances allowed: touching 0.5 m (~20 in) apart
 - Cued measurement over each seed in the pair
- Ground truth details:
 - Actual seed distances: 0.10 m (3.9 in) 0.41 m (16.1 in)
 - Orientation
 - 1 pair perpendicular
 - 22 pairs parallel side-by-side
 - 27 pairs parallel in-line
 - All complex seeds initially buried at 0.15 m (6 in) bgs

Complex Seed Classification Challenges

- 33% of complex seeds failed 0.9000 decision stat (significantly higher than single source seed failure rate)
- Following a second round of cued measurements, fail rate dropped to 19%, which was still considered high
- Failing decision statistics had an average 0.7839 and similar classification results
- Distance ranged between complex seed pairs that failed:
 - Minimum 10.7 cm (4.2 in)
 - Maximum 39.6 cm (15.6 in)
 - Average 26.1 cm (10.3 in)
- In accordance with QAPP, all 19 failing seeds adjusted from 6 to 3 inches bgs and passed at shallower depth

Investigation Findings

- Attempt to determine the root cause of the complex seed failures
- Map shows location of all complex seed pairs; red triangles required depth adjustment to pass
- Complex seed failures occur mostly in low mid anomaly densities and are geographically distributed across site
- Seed pair orientation of failures:
 - 17 parallel and in-line
 - 1 parallel side-by-side
 - 1 perpendicular
- SBGs reviewed, all passed quantitative and qualitative analysis, no indication of drift issues

Investigation: What do the failed seeds match to?

- Ran failed complex seeds against entire DoD TOI library
- Failed seeds matched well to rifle grenade rocket
- Comparison made of size/decay for small ISO vs. rifle grenade vs. seed results
 - Equivalent wall thicknesses for all three
 - Rifle grenade ~63% larger than small ISO
 - Seed results ~53% larger than small ISO

ΤΟΙ	Size	Decay
Small ISO	0.24	0.03
Rifle grenade	0.65	0.03
Seed results	0.51	0.04

Analysis of Single Complex Pair -Seeds AP15_905 and AP15_997

AP15_905/AP15_997 Seed Pair Collection Summary

- 11 cued measurements taken over pair
 - 7 over AP15_905
 - 4 over AP15_997
- Data collected over ~40 days

- Three different background locations
 - SAM/SBG Distance: 303 m 118 m
 - SAM/SBG Time: 20 mins 7.5 mins
- Seeds in-line, 19 cm (7.5 in) apart

UXA Target ID	Collection Date	Collection Time	Background	SBG/SAM Dist (m)	SBG/SAM Time Offset	Seed to Array Dist (m)	Decision Stat	Pass/Fail	Seed Depth (in)
Seed AP15_905									
AP15_905_001_11	3/31/2022	18:40:48	AN15_2034	118.40	12:16	0.07	0.7783	Fail	6
AP15_905_001_11	4/7/2022	15:37:11	AN15_2065	118.49	08:48	0.05	0.8312	Fail	6
AP15_905_001_11	4/18/2022	17:44:23	AN15_2065	118.53	11:59	0.04	0.8376	Fail	6
AP15_905_002_32	4/22/2022	15:10:03	AR13_2043	195.76	19:57	0.14	0.8269	Fail	6
AP15_905_001_21	5/3/2022	18:01:21	AP20_2039	303.21	07:39	0.04	0.9057	Pass	3
AP15_905_001_21	5/10/2022	14:48:20	AR13_2043	195.74	07:58	0.01	0.9655	Pass	3
AP15_905_002_22	5/10/2022	14:48:54	AR13_2043	195.74	08:31	0.02	0.9859	Pass	3
Seed AP15_997									
AP15_997_001_33	3/31/2022	18:42:01	AN15_2034	118.57	13:29	0.04	0.8025	Fail	6
AP15_997_001_22	4/7/2022	15:38:22	AN15_2065	118.63	09:59	0.09	0.8317	Fail	6
AP15_997_002_22	4/18/2022	17:46:34	AN15_2065	118.61	10:41	0.02	0.8318	Fail	6
AP15_997_001_21	4/22/2022	15:29:31	AR13_2043	195.65	15:33	0.02	0.9224	Pass	3

9

AP15_905/AP15_997, April 7 Classification Results

- SAMs taken less than 2 minutes apart
- Background: ~9 minutes and ~118 m between SAM/SBG
- Array to source offset and decision stat:
 - AP15_905: 5 cm (2.0 in); 0.8312
 - AP15_997: 9 cm (13.5 in); 0.8317

AP15_997, April 7 Multisource Polarizability Plot

AP15_905/AP15_997, April 22 Classification Results

- SAMs taken ~6 minutes apart
- AP15_997 depth adjusted to 0.08 m (3 in) bgs, AP15_905 remained at 0.15 m (6 in) bgs
- Background: ~17 minutes and ~195 m between SAM/SBG
- Array to source offset and decision stat:
 - AP15_905: 14 cm (5.5 in); 0.8269
 - AP15_997: 2 cm (0.8 in); 0.9224

AP15_905/AP15_997, April 22 Multisource Polarizability Plots

Seed AP15_905 Fails

Seed AP15_997 Passes

AP15_905, May 10 Classification Results

- Data collected over AP15_905 only (AP15_997 passed April 22)
- AP15_997 and AP15_905 adjusted to 0.08 m (3 in) bgs
- Background: ~8 minutes and ~195 m between SAM/SBG
- Array to source offset and decision stat:
 - AP15_905: 1 cm (0.4 in)
 - Both seeds classified with decision stats above 0.9500

AP15_905, May 5 Multisource Polarizability Plots

Seed AP15_905 Passes

Validation Seeding Complex Seed Analysis Conclusions

- Good news! All complex seeds passed at depths of either 6 in or 3 in bgs – complex sources the size of small ISO <u>can be reliably</u> classified at 0.08 m (3 in) bgs or shallower
- Bad news! Complex sources the size of small ISOs (37-mm) <u>cannot be reliably</u> classified at 0.15 m (6 in) bgs
 - Failure rate of ~20%
 - Failure occurs more often (~90%) when items are oriented parallel and in-line with each other
 - Two items in some cases resolve into a single, larger
 source

RA Complex Seed Results

- 6 pairs of complex seeds in non-AGC areas
- 44 pairs surveyed using APEX one-pass classification
 - 12 pairs (27%) pass: two separate Category 1 sources met all MQOs
 - 7 pairs both seeds at 15 cm (6 in)
 - 5 pairs either one or both seeds at 8 cm (3 in)
 - 28 pairs (64%) pass/complicated : single Category 1 source meets MQOs for both seeds
 - Most have second source that would pass, but was identified as a "duplicate" by the data analyst
 - 4 pairs (9%) fail: single Category 1 source met MQOs, other seed failed horizontal offset MQO (25 cm)
 - 2 pairs both seeds at 15 cm (6 in)
 - 1 pair both seeds at 8 cm (3 in)
 - 1 pair a seed at 15 cm (6 in) and 8 cm (3 in)
 - Almost all seeds (98%) are predicted as a larger, deeper item

RA Summary Table and USACE Perspective

Classification Results	Number of Seed Pairs	Percent of Seed Pairs	Library Item Match	Number of Seeds
			Small ISO	2
Pass – two sources	12	27%	60mm Mortar	8
			2.36-inch Bazooka Warhead	14
Pass/Complicated – one source			Small ISO	0
	28	64%	60mm Mortar	20
			2.36-inch Bazooka Warhead	36
Fail – one seed ≥ 25 cm offset MQO	4		Small ISO	0
		9%	60mm Mortar	4
			2.36-inch Bazooka Warhead	4

- USACE will not be emplacing complex validation seeds
- Function should be QC, not QA, in accordance with upcoming 200-1-15 guidance revision

Final Thoughts

- These results challenge industry assumptions
 - Individual items cannot always be reliably classified in multisource scenarios, even at depths not expected to challenge classification
 - Intrusive MQO "100% of recovered item positions ≤ 25 cm from predicted position" but complex seed failures occurred for seeds at a distance up to 39 cm and an average - 26.1 cm
- More research needed to
 - 1. Understand the implications of these findings
 - 2. Fully understand the failure in terms of depths, orientation of sources, and size of TOI
- Optimistic that the eventual industry-level solution will get us there!

Thank you

Jacobs would like to acknowledge the following individuals for their exceptional support: Jacobs Team: Peter Jump, Brandon Cowan, Stuart Bancroft, Katura Willingham, Gary Colgan, and Mike Halil USACE: Kyle Lindsay and John Jackson