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Sediment Volume Search Sonar (SVSS)

• Detect proud and buried unexploded ordnance (UXO) in shallow water
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Data Cube Visualization

• Maximum intensity projection (MIP)
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ATR Approach

• Two-stage ATR approach
– Fast, simple, general-purpose MondrianB detector

• Generate set of alarms to classify
• Reduces amount of data to process

– Follow-on, more sophisticated convolutional neural network (CNN) classifiers
• Ensemble of tiny CNNs using different architectures and also different input 

representations 
• Leverage all available information in robust manner
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Normalization Algorithm

1. Determine dominant interface
2. Determine multipath region
3. For each cross-track position x, 

compute median of depth slice
4. For each along-track position y, 

compute median of depth slice
5. Convert to logarithmic scale
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Impact of Normalization
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Detection Algorithm: MondrianB

• Compute summed intensity in 
three concentric volumes
– Target
– Guard
– Background

• Target-to-background ratio test
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Integral Images

• A: Image (data)
• W: Integral image
• U: Summed intensity in a block
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Example Target Alarms

A FD ECB
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Classification

• Take alarms generated by MondrianB detector and make predictions with classifier(s)
• CNN-based approach

– 8 new basic CNN architectures designed
• Different architectures uncover/exploit different clues
• “Vanilla” architecture: alternating convolutional blocks and pooling layers

– Ensemble approach in terms of architectures and also in terms of input data 
representations

– Tiny CNNs to balance network complexity with amount of labeled data available
• Avoid overfitting
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Era of Deep Learning
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UXO Classification with Sonar Data

?
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Deep Learning

• Key Ratio: Model Complexity / Training Data
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Convolutional Neural Networks (CNNs)
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CNNs for SAS Data

• Simpler task

– Number of classes, image complexity

• Resource constraints

– Data, computing power

 Solution: Tiny networks
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3-d CNNs
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3-d CNN Architectures

Convolution + ReLU

Average Pooling

Fully-Connected + SoftMax



Data Collections

Fosters Joseph Sayers Reservoir (PA) Aberdeen Test Center (MD)
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Human Assessment
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Performance: Proud Targets
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Performance: Buried Targets
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Classification

• 3-d CNNs with SVSS data
– Train: Sayers “Deep” site
– Test: Sayers “Shallow” site
– “Target” = man-made object

• Assessment
– Asymmetric costs of misclassification
– False alarm rates at key PdPc values
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Classification Performance



Inside CNN A

0.86
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CNN E
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CNN Intermediate Responses

CNN A CNN HCNN E
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Conclusions

• Automated detection and classification algorithms show promise for proud and buried targets in 
volumetric sonar data

– Require more extensive field tests (and data!), especially in different environments
• Future/ongoing work: Develop CNNs for alternative data products (e.g., acoustic color)

* Image courtesy of Tim Marston (APL/UW)
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