ENVIRONMENTAL DATA QUALITY IN THE MILITARY MUNITIONS RESPONSE PROGRAM

U.S. Army Engineering and Support Center, Huntsville Andrew Schwartz March 2018

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

I started to put this presentation together two hours before I left for a one week vacation, and then I caught Enfluenza Type A+, which knocked me on my behind for most of a week, and then came here.

Hopefully this will all make sense...

AGENDA: MUTUAL INDEPENDENCE OF SEED LOCATION AND SEED ENCOUNTER

Theorem: A' and 0 1 $A' \cap B' = (A \cup B)'$ P(A'NB') = P(AUB)'] AX 1-P(AUB) $= 1 - \left[P(A) + P(B) - P(A \cap B) \right]$ $= 1 - P(A) - P(B) + P(A \cap B)$ = $(1 - P(A) \cdot (1 - P(B)))$ = $P(A') \cdot P(B')$ = $P(A') \cdot P(B')$ = $P(A') \cdot P(B')$

3

WHAT 'ENVIRONMENTAL DATA QUALITY' IS NOT:

At the count of three I will snap my fingers, you will resweep 10%, and the grid will be cleared!

of Engineers.

Δ

WHAT 'ENVIRONMENTAL DATA QUALITY' IS

Being able to say this is what we achieved with a high degree of confidence.

of Engineers.

U.S.ARMY

File Name

"THIS IS WHAT WE ACHIEVED"

Two simple but critical elements:

1- Show where we looked for MEC

File Name

"HIGH DEGREE OF CONFIDENCE"

In-Line Spacing 🗸 Across-Line Spacing 🗸 Coverage 🗸 Background Noise 🗸 Interference Sources 🗸 Tx Current 🗸 Rx Settings 🗸 Instrument Averaging Functions 🗸 Anomaly Selection Methodology 🗸 Positioning Accuracy 🗸 Anomaly Resolution 🗸 Inversion Model 🗸 Classification Match Metrics 🧹

We can quantitatively QC each of these until we are blue in the face...

But what do people really want to know?

> US Army Corps of Engineers.

HOW DEEP CAN YOU DETECT? WHAT DID YOU MISS?

Before we embraced the EMI Dipole Model:

- Clean-up Statement (as explained by many in USACE between mid '90s to about 2010):
 - We didn't know what was there before we came
 - > We recovered what we recovered
 - > We don't know what we left behind
- Words commonly used

➢ EE/CA, TCRA, NTCRA

- > GPO
- ➢ 10% QC sweep
- ➢ 10% QA sweep
- Failure is missing a piece of metal
 37mm or longer in any dimension
- The site will be cleared using a combination of geophysics and mag and flag

IAI DID YOU WISS?

After we embraced the EMI Dipole Model:

- Clean-up Statement:
 - > If MEC was there, and
 - > the metal detector went over it, and
 - > our system was working, then
 - ✓ We detected & recovered it
- Words Commonly Used:
 - > DAGCAP
 - CERCLA Remedial Action
 - Remedial Action Objectives
 - > QAPP
 - Horizontal CSM
 - Vertical CSM
 - QC Seeds
 - Validation Seeds

SEEDING

From Slide #7

From Slide #8

HOW DEEP CAN YOU DETECT? WHAT DID YOU MISS?

Before we embraced the EMI Dipole Model:

- Clean-up Statement (as explained by . many in USACE between mid '90s to about 2010):
 - > We didn't know what was there before we came
 - We recovered what we recovered
 - We don't know what we left behind
- ٠ Words commonly used
- > GPO
- > 10% QC sweep
- > 10% QA sweep
- > Failure is missing a piece of metal 37mm or longer in any dimension
- The site will be cleared using a combination of geophysics and mag and flag
- EE/CA, TCRA, NTCRA

- After we embraced the EMI Dipole Model:
- Clean-up Statement: •
- > If MEC was there, and
- the metal detector went over it, and
- > our system was working, then
- ✓ We detected & recovered it
- · Words Commonly Used:
- > DAGCAP
- CERCLA Remedial Action
- Remedial Action Objectives

IMI

US Army Corps of Engineers.

> QAPP

M2D Lot

- Vertical CSM
- > QC Seeds Validation Seeds

U.S.ARMY

9

of Engineers.

FOCUS ON SEEDING

Who Should Do It

Weinrent Guidance does not specify
Hotom M200-1-15: Quality Requirements Tables 11-3 through 11-6

- Commonly thought as contractor "QC" & government "QA"
- Need to think
 - ➤ "Single Blind"
 - "Double Blind"

SEEDING: WHEN

Two types of "When":

- 1. The "Before Work Begins When":
 - Remedial Actions & Removal Actions: Always
 - Remedial Investigations: Final Decisions→Always; Otherwise, not so much
 - Feasibility Studies: For costing (i.e. analog)
- 2. The "After An Analog Validation Failure When"

Two schools of thought:

- i. Keep redoing the area until all seeds are recovered
- ii. Re-seed to maintain high degree of testing

US Army Corps of Engineers.

SEEDING: HOW MUCH

Digital Methods: Minimum 1 each QC and Validation per system per day

Analog Methods: 5-6 Validation per system per day

Environmental Chemistry Quality Test	Purpose	Blind Seeding Analogue	Purpose
Performance Test Sample	Assess capability to detect target analytes within acceptable criteria	QA (Government) seeding	Assess capability to detect MEC within acceptable depth intervals
Matrix Spike	Assess performance of the method to detect target analytes in the presence of interferences caused by the sample matrix	Seeding in the presence of interference sources, such as nearby clutter, external noise, or variable background	Assess performance of the detection method in the presence of interference sources
Laboratory Control Sample	Determine if the system is running properly	QC (contractor) seeding	Determine if the MEC detection and recovery system is running properly
Laboratory Fortified Blank	Evaluate sensitivity and bias to detect low concentrations (at the QL) of specific compounds	Seeding at or near the maximum required reliable detection depth	Assess ability to consistently detect deep MEC at the predicted reliable detection depth

Environmental Quality Tests And Their MMRP Quality Analogues

US Army Corps of Engineers.

WHY ALL THIS SEEDING DATA USABILITY ASSESSMENT TO SUPPORT THIS:

 \rightarrow If it was there, and

Vertical CSM & Coverage Map

SUMMARY GOAL OF ENVIRONMENTAL DATA QUALITY

Produce data appropriate for its intended use that is defensible and reproducible We Can Do This:

- Based On Complete Knowledge Of System
 Performance
- Needs-Driven Design
- Quality Management Systems

The Consequence Of Environmental Data Quality

THANK YOU

File Name