

ESTIMATING SITE-SPECIFIC EFFECTIVE CUED CLASSIFICATION DEPTH

SAGEEP/MRM 2023 NEW ORLEANS, LA

Craig Murray, Richard Perry, and John Jackson 4/4/2023

Detection Depth vs Classification Depth

Cued Classification Depth Estimate Method

Lalamilo Project Background

Lalamilo Effective Classification Depth

Comparison between Depth Estimates and Physical Seed Results

Finding sources deeper than effective classification depth

Conclusions

Questions

DETECTION DEPTH ESTIMATES

11x Diameter

NRL Reports and Software

Forward Modeling in UX-Analyze, BTField, and EMCLASS or test stand measurements

DETECTION DEPTH VS CLASSIFICATION DEPTH ESTIMATES

Detection depth is relatively simple to estimate if you have

- A well characterized Item (polarizabilities)
- Sensor characteristics and height
- Site noise levels

Cued classification depth estimating is more challenging because

- Classification decisions are made on model-library comparison statistics, not responses
- Background removal effectiveness depends on sensor drift, environmental factors and site-specific ground response variability
- · Estimates must take into account a variety of item orientations and offsets from the cued sensor

Classification Depths are typically shallower than detection depths

Current Options for Estimating Classification Depth					
Method	Pros	Cons			
Physical Seeding	Directly tests classificationAppeals to non-geophysicists	Large level of effortDelayed estimates			
Synthetic Seeding	Low level of effortHigh spatial resolution	 Delayed estimates Applicability to cued classification? May be viewed as "hocus-pocus" Limited software availability 			

UX-ANALYZE BACKGROUND VALIDATION TOOL

Designed to be used to validate background locations as suitable

- · There are no metallic items in the vicinity
- A TOI is classifiable above the background noise level

- Subtracts the center measurement from each of the four surrounding measurements
- Adds the TOI response data to the surrounding measurements
- Determines the combined library match (decision statistic) for the surrounding measurements
- Use the smallest TOI at the deepest depth

UX-ANALYZE BACKGROUND VALIDATION TOOL

10²

10²

[Surr Id]	[Dist]	[Az]	[TOI / Bkg Amp Ratio]	[Match Metric]
1	0.304	87.4	15.312	0.984
1	0.408	167.0	21.749	0.999
1	0.298	246.6	16.588	0.999
1	0.330	355.3	16.649	0.997

Sensor: MPV-A 25ms 60gates Low gate: 8 High gate: 59 Minimum beta amplitude: 0.001

UX-ANALYZE BACKGROUND VALIDATION TOOL

• The Background Validation Tool can be utilized to determine decision statistics for other TOI expected at the site and at different depths

DEPTH DECISION STATISTIC CURVE

LALAMILO REMEDIAL ACTION PROJECT

- 120 acres of Detection/Screening followed by cued classification
- UltraTEM screener with PDM8® used in challenging terrain
- Detection depths estimated based on BTField forward modeling and PDM8® test stand measurements
- Smallest TOI: Small ISOs at 25 cm bgs
 - Estimated Medium ISO detection depth of 46cm
 - Estimated Large ISO detection depth of 56cm
- Cued data collection with MPV
 - Cued classification with UX-Analyze

	Estimated I	Detection
Confirmed or	Depth	
Commed of	(in the hortex) 1	
Suspected Munitions		<u>(25)</u>
	PDM8®	UltraTEM
M1 land mines	26 ³	26
Fuzes (Mk137, M48,	10 ²	11.8
M54)	0.02	04.0
4.5-inch barrage	263	34.3
	4.43	100
2.36-Inch rockets (HE)	143	10.9
M9A2 rifle grenades	113	11
(IIE) M18 emoke grenedee	102	11.8
Mk15 WP grepades	102	10.7
Mk II hand grenades	102	11.8
(HF)	TO	11.0
60mm M49A2 mortar	18 ³	16.1
(HE)		
60mm M83A1 mortars	18 ³	20.9
(illumination)		
37mm M63 projectiles	10	10
(HE and armor piercing)		
75mm M48 projectile	22 ³	26.4
(HE)		
75mm Tracer (armor	22 ³	26.4
piercing)	0.02	
81mm mortars (HE)	223	23.6
105mm projectile	26 ³	31.9
2-inch Japanese mortar	10 ²	10 ²
Type 97 Japanese	10 ²	10 ²
hand grenade	1.00	100
Type 99 Japanese	102	102
hand grenade		

MEDIUM ISO CLASSIFICATION DEPTH

- Medium ISO QC Seed at 46 cm bgs was detected
- Cued MPV predicted location was offset 0.46 m from ground truth
- The closest TOI sources have marginal decision statistics and polarizability curves similar to geologic sources
- Conclusion: There was insufficient signal in the MPV cued data given background geologic variability to classify the seed as TOI with accurate coordinates

MEDIUM ISO CLASSIFICATION DEPTH

- For Background Location Validation a small ISO at 25cm depth was used
- The Background Location Validation Tool Method was used to estimate the effective classification depth for medium ISOs
- 10 different validated background locations were used to determine decision statistics for medium ISOs at a variety of depths between 20 and 60 cm bgs

Horizontal Medium ISO Classification Performance

EFFECTIVE CLASSIFICATION DEPTH VS PHYSICAL SEED RESULTS

300 QC seeds and a similar number of QA seeds

- 25 Medium ISOs at 46 cm bgs
- 16 horizontal Medium ISOs at 46 cm bgs

Small ISOs

- Maximum Burial Depth = 25 cm
- 100% cued were included on the dig list

Medium ISOs

- Maximum Burial Depth = 46 cm
- 87% of cued horizontal Medium ISOs buried at 46 cm were classified as TOI
- 100% of cued Medium ISOs at < 42cm were included on the dig list

Large ISOs

- Maximum Burial Depth = 56 cm
- 100% cued were included on the dig list

Physical seed results consistent with estimates

DETECTION DEPTH > CLASSIFICATION DEPTH

- Include dig for items below effective classification depth
- UltraTEM Screener results
 - Response of 8.5 $\mu\text{V/A},$ above the threshold of 2.0 $\mu\text{V/A}$
 - Library Match 0.98

MPV results

- Low signal strength
- Large offset from UltraTEM Source (>0.25 m)

Add Sources to dig list if:

- MPV signal strength low,
- UltraTEM response was above threshold,
- At least one MPV source classified added to dig list, and
- Offset between UltraTEM and MPV sources > 0.25 m
- Added 1.5 digs/acre
- Increased dig rate of Medium ISO QC Seed items at 46 cm depth to 100%
- DUA stated removal depth for Medium size items was 42 cm

CONCLUSIONS

- Background Validation Tool can be used to estimate effective cued classification depth
- Estimated effective cued classification depth was consistent with physical seed results
- Developed a method for increasing probability of including deep Medium ISOs dig list
- Deepest medium size UXO found at the site was a 60mm Mortar found 25 cm bgs, significantly shallower than the estimated effective classification depth of 42cm

Estimating Cued Classification Depth with UX-Analyze Background Validation Tool

Pros	Cons	
Software Tool Exists	Not scriptable – time consuming	
Can estimate for any TOI in library	Does not identify problem areas (power line noise, high ground response, etc)	
Implement early in cued data collection process	Only accounts for variable response at background locations	
Estimates are site-specific	Does not account for effects of high metal density	
Can be used for cued classification	Not applicable to dynamic classification	

ACKNOWLEDGEMENTS

- Richard Perry and John Jackson
- USACE Huntsville and Honolulu Districts
- Prime Contractor Na Ali'i-ERRG JV