Advanced UltraTEM-III UXO detection and classification in the South Pacific Region

William Rowlands – *GapEOD, Australia* Stephen Billings – *GapEOD, Australia* Remke van Dam – *GapEOD, Brazil*

Presentation Overview SAGEEP 2018

The Motivation

Danger posed by buried UXO to civil works.

The Solution - EMI

Benefits of EMI Methods.

Case Study 1 UXO at RAAF Base Williamtown.

Cast Study 2 UXO at a Copper Mine in Laos.

Conclusion and Other Applications UltraTEM technology in other applications.

The Motivation - UXO

Personal Danger

Risk to people who live and work in areas of UXO contamination.

Costly

Remediation process slow with areas needing to be searched at multiple levels.

Developing Countries

UXO may lay in-situ for many decades.

Lack of Records

Hard to distinguish between high and low risk area.

EM-61, Laos

TDEM Systems

PROS

- Popular and proven for UXO Detection
- Digital Auditing
- Can detect non-ferrous objects

CONS

- Receiver Limitations (target discrimination)
- Transmitter power (detection depth)
- Non-flexible form factor

UltraTEM-III

Powerful EM Transmitter

Multi 3-comp Rx Modules

High Resolution MLEM Operation

MLEM Configuration

Transmitter coil is co-located with sensors on moving non-metallic frame.

Large Area Coverage

Designed to coverage areas over 1 ha/day. 1-2 person operation. Suited to Cluttered urban areas.

Flexible Form Factor

Push Cart, Man-carried, or towed array.

Target Discrimination

BTField Data Acquisition and Processing Software designed by Black Tusk Geophysics.

FLEM Operation FLEM Configuration (\odot) High Power Tx Current. Large Area Coverage **Flexible Form Factor** (Ö) Push Cart, Man-carried, or towed array. **Target Discrimination** BTField Data Acquisition and Processing Software designed by Black Tusk Geophysics. UltraTEM-II FLEM Frame, Pakse, Laos

Transmitter coil is separated from the sensors.

Designed to coverage areas over 1 ha/day. 2-3 person operation. Suited to open areas.

Data Sheet Extract

SAGEEP 2018

- Coil Ana Syst Rece Nun Stac Out Sam
- Dec Sup Curi IMU Pow

Area	3.78 m ²	
alogue Digital Converter	23 bit + 1 sign bit	
tem Noise @ 1000 Hz	< 4 nT/√Hz	
eiver Sampling Frequency	800 kHz	
nber of Stacks	8	
cking Method	Weighted, overlapped	
put Decays	8 per second	
nples per Decay	45 samples evenly	
	spread over	
	logarithmic time scale	
ay Length	0.9 to 10 ms	
ply Voltage	9 to 15 V	
rent draw (6 coils, FG,	2.8 A at 13 V	
J)		
ver requirement	36.4 W	

Case Study 1

RAAF Base Williamtown

Project - Overview

Base Operated late 1930's to Present

American and British troops on base during WWII.

Royal Australian Air Force

\$679 m AUD Redevelopment of Base R8000 New Air Combat Capability (NACC) Facilities Project.

Project Location: RAAF Base Williamtown.

Detection Requirements

20mm HEI projectile @ 300mm (1')

Assumed detectable metal 100 g (3.5 oz.).

8.5lb Practice Bomb @ 1500mm (5')

Assumed detectable metal 1.0 kg (35 oz.).

Locate Large Obstructions

Any items that may pose an issue to earthworks

UltraTEM Prototype Towed Array. Australia

CRATING TO BELLE

Survey Method MLEM Operation

TOWED ARRAY

- 8 sensors, 30 cm spaced
- 2.6 m swath
- 2.6 x 1.0 m Tx loop
- Daily Coverage of 4 ha (10 ac.)

PUSH CART

- 6 sensors, 30 cm spaced
- 1.8 m swath
- 1.8 x 0.9 m Tx loop
- Daily Coverage of 1 ha (2.5 ac.)

RAAF Base Williamtown

UltraTEM Survey Coverage

1 km

250

300

Flag

Dig

Don't dig

200

Easting - 386500 m

150

100

50

Processing and Interpretation

Processing

- Rx values normalised to Tx current
- Background and Geological feature removal

Sounding (Fid. 61330)

1000

4000

3500

3000

2500

2000

1500

1000 500

Processing and Interpretation

Processing

- Rx values normalised to Tx current
- Background and Geological feature removal

Interpretation

- Early time anomalies of 5 uV selected for further interpretation
- Anomalies with characteristic metal decay added to dig list

30 mm rounds recovered from burn pit. Australia

Results

Targets

>10,000 anomalies identified

Ground Truth

- 20 mm and 30 mm rounds
- 50 Calibre
- Primers
- 30 mm chain link
- WWI 1918 Howitzer (6")

Case Study 2

UXO at a Copper Mine in Laos

Project Overview

Sepon (MMG Limited)

Open-pit copper mine in Southern Laos.

Heavily Bombed during Vietnam War

Project straddles the Ho Chi Minh Trail

Project Location: Sepon, Laos

Project Overview

UXO

Up to 20 % of the many millions of aircraft bombs did not explode.

Deeply Buried

UXO can be buried deep due to the steep terrain. Large effect on daily mining operations.

Items of Concern

Aircraft Bombs

MK81: 250 lb bombs MK82: 500 lb bombs

Items of Concern

Aircraft Bombs

MK81: 250 lb bombs MK82: 500 lb bombs

Clearance

Up to 3.0 m to be efficient

Items of Concern

Aircraft Bombs

MK81: 250 lb bombs MK82: 500 lb bombs

Clearance

Up to 3.0 m to be efficient

Magnetic Geology

Causes additional detection problems

Magnetometer

Blind Trials 2014

EM61 towed-array

Magnetometer

UltraTEM FLEM Configuration

Blind Trials 2014

EM61 towed-array

				Soil
ltem	Depth	Orientation	Detected	conditi
MK82	1.8 m	horizontal	Yes	High-m
MK82	2 m	horizontal	Yes	High-m
MK82	3 m	vertical	Yes	High-m
MK81	3 m	vertical	Yes	High-m
MK82	3 m	45 degrees	Yes	High-m
MK82	3 m	vertical	Yes	High-m
MK81	3 m	horizontal	Yes	High-m
MK81	3 m	horizontal	Yes	High-m
MK82	3 m	vertical	Yes	High-m
MK82	3.5 m	horizontal	Yes	High-m
MK81	3.5 m	horizontal	Yes	High-m
MK82	3.5 m	vertical	Yes	High-m
MK81	3.5 m	vertical	Yes	High-m
MK81	3.5 m	horizontal	Yes	High-m
MK82	3.75 m	horizontal	Yes	High-m
MK81	4.25 m	vertical?	Yes	Low-ma
MK82	4.5 m	horizontal	Yes	High-m
MK81	5.25 m	horizontal	Yes	Low-ma
MK81	5.25 m	vertical	Yes	Low-ma
MK82	5.25 m	vertical	No	High-m
MK81	5.25 m	horizontal	No	High-m

iag iag

nag

- nag
- ag
- iag iag
- nag nag nag
- ag nag ag
- ag nag
- nag nag

Detection and Discrimination

The UltraTEM system consistently detected all bombs to depths of 5 m.

Implementation

Deployment

UltraTEM-II system deployed in March 2015. Daily Use by MMG

FLEM Deep Search Configuration

Array Swath 4 m wide. Daily coverage up to 1.2 ha.

Onsite Geophysicists

Data processing on-site. Targets dug within 2 hours of data transfer

Target Discrimination

Since UltraTEM implementation no **UXO have been missed**

Implementation Sepon MMG

In-pit Survey

Vegetation Clearance

Heavy Vehicle Interaction

Other Applications

UltraTEM-Marine Sledge

UltraTEM-Marine ROV

Ground Engaging Tools (GET)

Conclusions SAGEEP 2018

Accuracy

The UltraTEM is a geophysical technology that allows for metal object searches with high fidelity.

Dependable

The powerful transmitter and three-component EM receivers produce high data clarity allowing for dependable discrimination of objects.

Proven

The presented case studies show the successful implementation of this technology in operational challenging civil and mining conditions.

Customizable

The flexible form factor and ability to customize the Tx and Rx array makes the UltraTEM a solution to a range of metal detecting scenarios.

Thanks for your attention

Will Rowlands Stephen Billings

Partners and Contributors

Questions

<wrowlands@gapeod.com> <stephenbillings@gapeod.com>

The Solution – EMI for Metal Detection

Electromagnetic Induction (EMI):

- 1. Primary Field from a Transmit Loop induces electrical currents in a buried object.
- 2. The Induced Field is *measured* in a Receiver Loop.
- \rightarrow Detection of objects

Time-domain EM (TDEM):
3. An abrupt change in primary field *excites Eddy Currents* in the object.
4. Eddy currents diffuse throughout the object and *decay with time*.

→ Characterization of objects