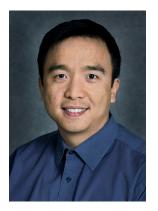


### Mapping Earth Field Anomalies with a Quantum Vector Magnetometer for Underwater UXO Detection


MR24-4533

Zhao Hao

Lawrence Berkeley National Laboratory

In-Progress Review Meeting 1/15/2025

# **Project Team and Collaborators**



Zhao Hao LBNL

#### **Quantum Engineering Student Team**

Saahit Mogan, Nathan Lahaderne, <u>Auden Young</u>, Karla Morales De Leon, <u>Jacob Kaita Martin</u>, Navya Singh, Brooke Newell, [Hunter Ocker, Nishanth Anand, Vidish Gupta, Drake Lin].

#### Lawrence Berkeley National Laboratory (LBNL)

<u>Stijn Wielandt, Vamsi Vytla</u>, Wei Liu, Thomas Schenkel, Todd Wood, Peter Nico, David Alumbaugh, Benjamin Gilbert

University of California, Berkeley (UCB)

Ashok Ajoy, Emanuel Druga

White River Technology (WRT) - Gregory Schultz

Molecular Foundry (MF) and Advanced Light Source (ALS)



- What technology or methodology is being evaluated?
  - Quantum vector magnetometer for UXO detection.
- Core Features:
  - High-sensitivity magnetic field detection using nitrogen vacancy centers in diamond.
  - Compact and low-power design for UAV integration.
  - Advances in high-bandwidth (MHz) dc/ac field sensing and noise isolation.



- What's been going well?
  - Completed optical design and acquired essential hardware (NVdiamonds, shielding chamber).
  - Demonstrated picotesla sensitivity on a benchtop optical system.
  - Achieved nanometer-scale gradient field and chemical magnetic resonance (MR) sensing in parallel experiments.
  - Progress in flux concentrator simulation for 10x field amplification.
  - Strong collaboration with the team and alignment on objectives.
  - Effective communication: regular updates and valuable feedback from SERDP management.



- What's not working?
  - Procurement Delays:
    - Long lead time (3-6 months) in hardware procurement (NV-diamonds, shielding chamber, customized optics).
    - 1-month delay in funding arrival.
  - Logistical Challenges:
    - Limited student availability during the fall semester, slowing progress.
    - However, final construction of the magnetometer in a low-field environment in progress (expected to finish in 2 months).



- What support do you need?
  - Additional funding and resources to support fieldtesting and integration with UAV platforms.
  - Continued guidance and feedback from the project manager to overcome current challenges.
  - We appreciate a possible project extension through the end of this year to complete milestones and maximize outcomes (ESTCP?).



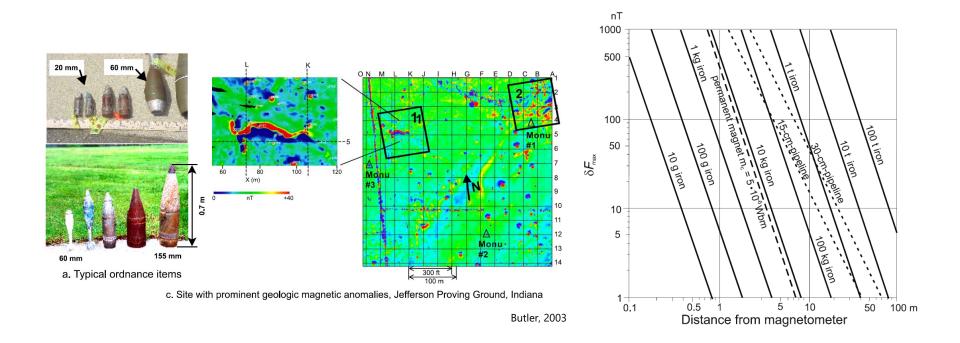
# **Technical Objective**

•**Proven Records of Magnetometry**: Magnetometry is a successful method for UXO detection and geological surveys (<u>without surface interference</u>).

•Quantum Sensor Transformation: Leveraging a quantum sensor array as a <u>vector</u> magnetometer improves <u>sensitivity</u> for airborne and underwater UXO detection.

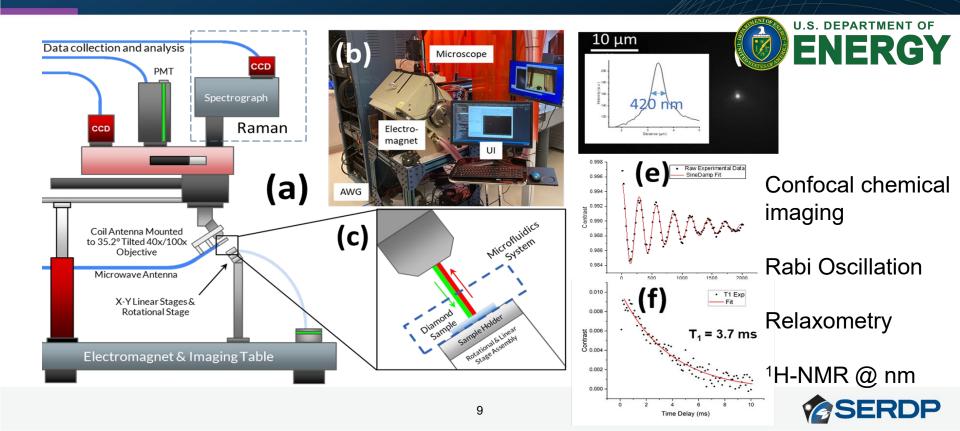
•Noise Isolation Innovation: Pulsed coherent control and sensing schemes (MHz) isolate the quantum magnetometer from operational noise (kHz), enabling versatile platform integration like UAVs.

•**Technical Advancement Goal**: Elevate the quantum vector magnetometer from TRL 4 to TRL 6 for prototype demonstrations in relevant environments.


•Enhanced UXO Detection: Anticipates <u>high dynamic range</u>, compact quantum devices enabling efficient and sensitive UXO detection for <u>high-throughput</u> surveys.

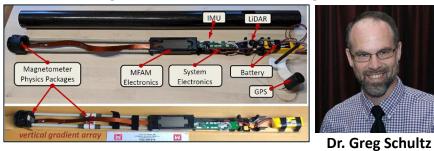
•**Mission Impact**: Broader DOD utility through multimodal sensing capabilities (e.g. chemical sensing), reducing survey costs and flight times while improving underwater UXO characterization.

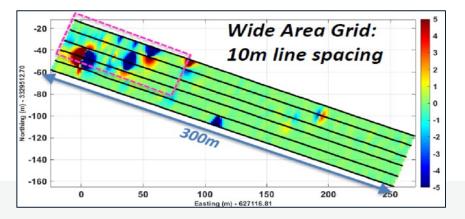
#### We seek to revolutionize the current sensing protocols and platform.



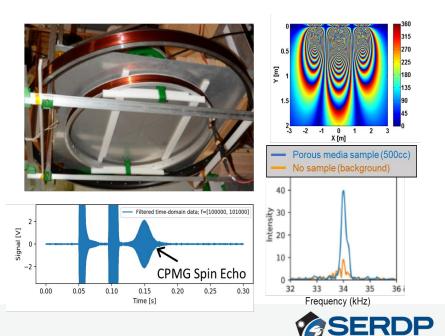

#### **UXO Detection with Magnetometer - a Mature Technology**





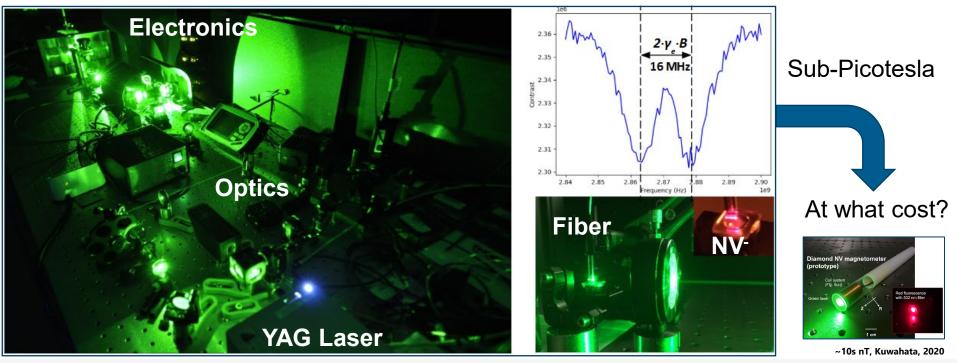


### **Quantum Sensing Laboratory for Geosciences**




### **Partnership with WRT – Technology Transition**

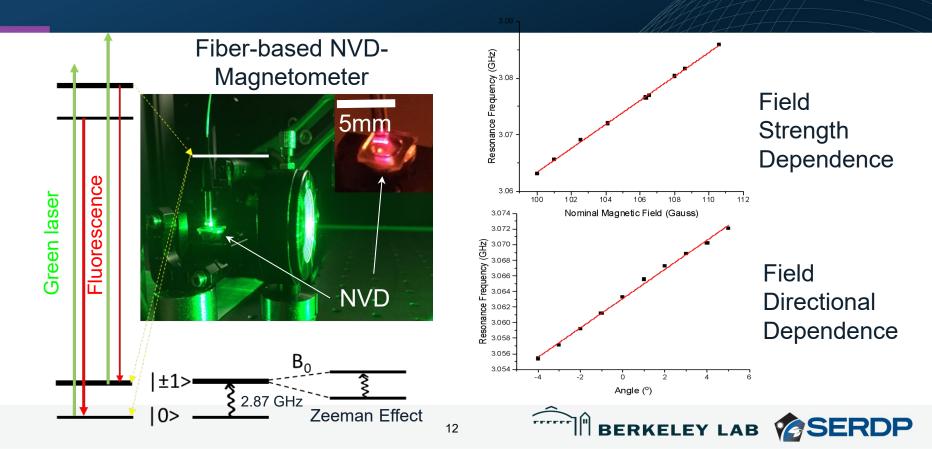
#### **UAV Magnetic Field Sensing Platform**



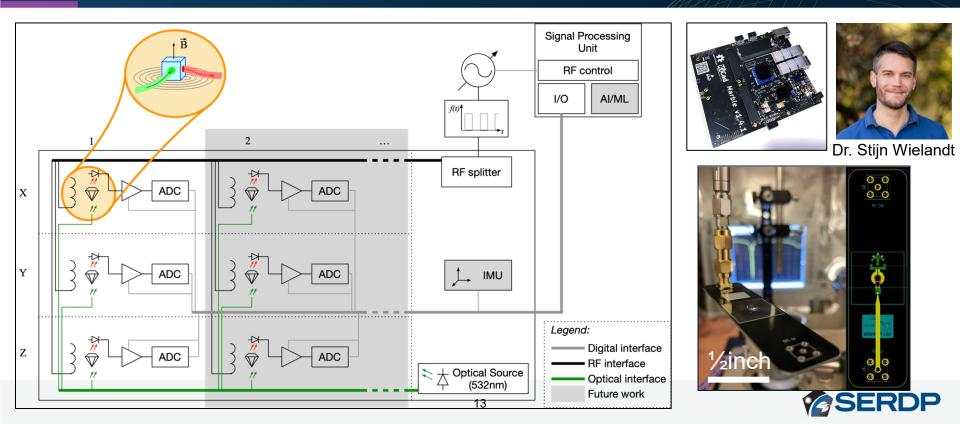



#### Subsurface EMI and MR Sensing Platform

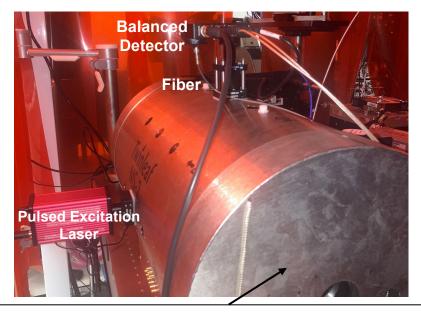



10

# Our Answer to the Challenge: Quantum Sensing of Magnetic Field using NV- Centers in Diamond







### Task 1 – Improve the current NV magnetometer



# Task 2. RF Signal Chain

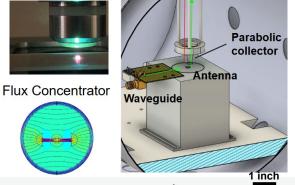


# Task 3 – Integration (In Progress)



Zero-field chamber for low field characterization

**Function Generator** & Desktop Computer





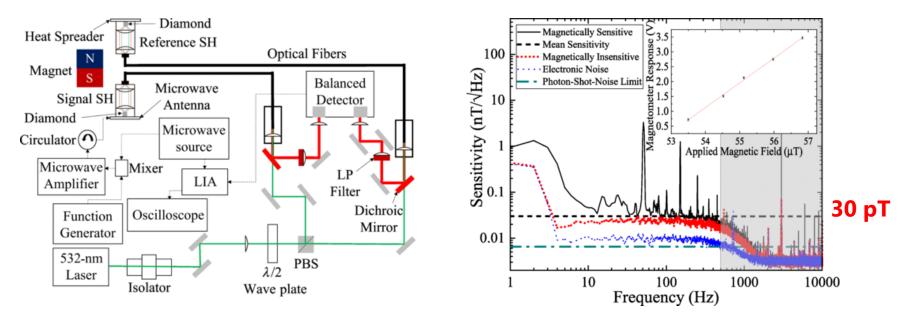








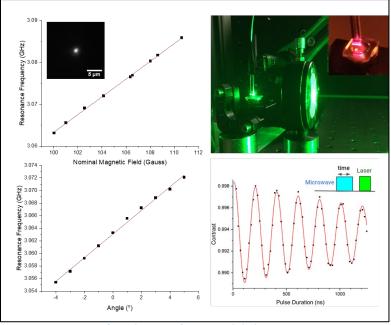




# **Highlight: Completed Magnetometry GUI**

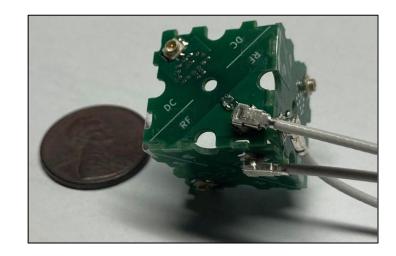
| 🗳 Quantum Sensing Microscop                  | e (BETA TESTING)     |                 |        |          |          |         |                    |                | - 0                            | >      |
|----------------------------------------------|----------------------|-----------------|--------|----------|----------|---------|--------------------|----------------|--------------------------------|--------|
| ile Advanced Window Help                     |                      | <br>            |        |          |          |         |                    |                |                                |        |
| Logged Quantities                            |                      | 🖞 Log 🐇 Console | S ESR  | Scan ESR | 5 Rabi 🖏 | т1 🖔 т2 | 🖏 XY8-N 🐇 CorrSpec | AOM Delay      | Utility 🐱 Magnetic Field Measu | rement |
| Hardware                                     | Value                | Camera Controls |        |          |          |         |                    | Stage Controls |                                |        |
| > AWG<br>> PMT                               |                      | Exposure Time   | 0.2000 | c 🍝      |          |         | Image 🗸 🗸          |                | Move Out                       |        |
| > thor_cam<br>> Switch                       |                      | Exposure rand   |        | 5        |          | Start   | Interrupt          |                |                                |        |
| > PI Stage                                   |                      | Gain            |        | ÷        |          | Laser   | n                  |                | Move In                        |        |
| Stage Rail     MCM Stage                     |                      |                 |        |          |          |         |                    |                | Interrupt                      |        |
| > Hall                                       |                      |                 |        |          |          |         |                    |                |                                |        |
|                                              |                      | Image           |        |          |          |         |                    |                |                                |        |
|                                              |                      | -200 -          |        |          |          |         |                    |                | 0.8                            |        |
| Measurements                                 | Value                |                 |        |          |          |         |                    |                |                                |        |
| > ESR                                        |                      | -100 -          |        |          |          |         |                    |                | -                              |        |
| > Scan ESR                                   |                      |                 |        |          |          |         |                    |                | 0.6                            |        |
| > Rabi                                       |                      |                 |        |          |          |         |                    |                | 0.6                            |        |
|                                              |                      | 0               |        |          |          |         |                    |                | -                              |        |
| > T2                                         |                      |                 |        |          |          |         |                    |                |                                |        |
| > XY8-N<br>> CorrSpec                        |                      |                 |        |          |          |         |                    |                | 0.4                            |        |
| > AOM Delay                                  |                      | -<br>100 -      |        |          |          |         |                    |                | -                              |        |
| > Utility                                    |                      | -               |        |          |          |         |                    |                | -                              |        |
| <ul> <li>Magnetic Field Measurem.</li> </ul> |                      |                 |        |          |          |         |                    |                | 0.2                            |        |
|                                              |                      | 200 -           |        |          |          |         |                    |                |                                |        |
| Арр                                          |                      |                 |        |          |          |         |                    |                | 10 um                          |        |
| Save Dir: p\quantum_sensing                  | ybeta_sensing Browse |                 |        |          |          |         |                    |                |                                |        |
| Sample:                                      |                      | -500            | -400   | -300 -20 | 0 -100   | 0       | 100 200            | 300 400        | 500 ROI Men                    |        |
|                                              |                      |                 |        |          | 100      |         |                    |                |                                |        |

15



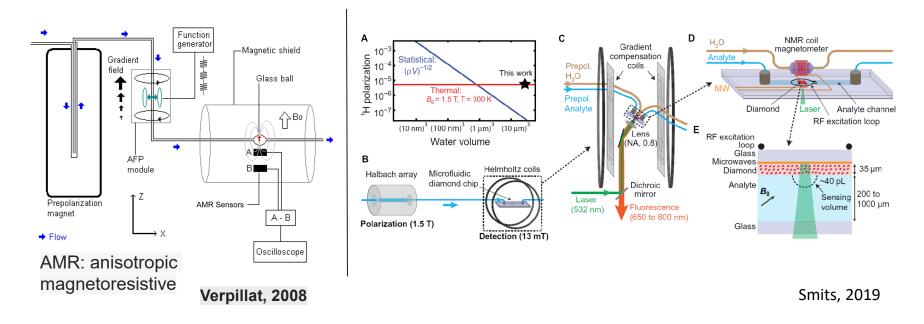

### **Inspiration from Recent Literature**




Graham, 2023

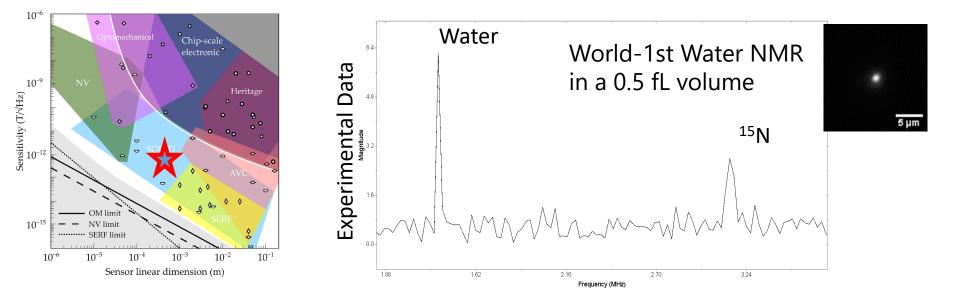


### **Future Research Plan A: Futher Reduction in Size**




sub-picoTesla sensitivity






### **Future Plan B: Deployable and Remote MR Sensing**





#### Lab Demonstration: Chemical MR Sensing Capabilities





## Conclusion

- **Expertise:** LBNL and WRT have extensive expertise in geophysical surveys, quantum sensing, and advanced electrical engineering.
- Key Achievements:
  - Achieved sub-pT sensitivity in laboratory settings.
  - Demonstrated nanometer-level sensitivity of confined water in nanotubes.
  - Developed a state-of-the-art magnetometer housed within a zero-field chamber (construction nearing completion).
- Next Steps:
  - Demonstrate dc/ac magnetic field sensitivity using a low-power diode laser.
  - Evaluate at low-field conditions equivalent to Earth's magnetic field.
  - Toward integration with UAV platforms.
- Future Plan: Explore remote MR applications for chemical detection

A preproposal submitted for FY26 SERDP Core Solicitation.





### **BACKUP MATERIAL**

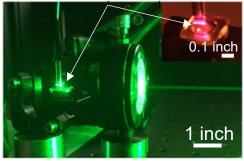
### MR24-4533: Mapping Earth Field Anomalies with a Quantum Vector Magnetometer for Underwater UXO Detection

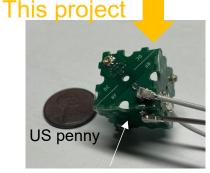
#### Performer: Zhao Hao, Lawrence Berkeley National Lab **Technology Focus**

A state-of-the-art quantum vector magnetometer using NV-diamond for UXO detection.

#### **Research Objectives**

- Develop a vector magnetometer with unprecedented sensitivity.
- Ensure low power consumption and compact design for UAV integration.
- Advance TRI from 4 to 6


#### **Project Progress and Results**


- Procured high-performance NV-diamonds and shielding chamber.
- Demonstrated sub-picotesla sensitivity in the laboratory setting.
- Completed circuit-board package and optical fiber-based setup.
- Will collect performance data and finalize reports.

#### **Technology Transition**

- Further reduce cost and overall size for practical deployment.
- Additional funding required for field trials and technology transition. 25

NV-diamond





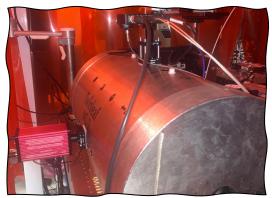
Circuit boards for 3-axis vector magnetometer



# Plain Language Summary

- Problems we are addressing
  - The difficulty of detecting underwater unexploded ordnance (UXO) safely and accurately.
  - Limitations of current magnetic sensing technologies in sensitivity, compactness, and/or power consumption for UAV deployment.
  - The need for more precise and scalable tools for UXO detection.
- What are you trying to achieve and how are you doing it?
  - Quantum sensing!!
  - Build a highly sensitive, portable, and energy-efficient magnetometer for UXO detection.




# Plain Language Summary

- Expected Outcomes:
  - A magnetometer that can detect very weak magnetic signals (sub-picotesla sensitivity).
  - A portable and energy-efficient device that can easily be deployed with UAVs.
  - Real-world tests showing its ability to identify UXO with high accuracy.
- Advancing Knowledge:
  - This project uses cutting-edge quantum sensing to solve real-world problems.
  - It introduces new ways to amplify weak magnetic signals and reduce noise.
  - The work will help bridge the gap between lab research and practical field applications for UXO detection.



# **Impact to DoD Mission**

- Current Progress
  - Successfully demonstrated nanometer-scale and sub-picotesla sensing capabilities.
  - Designed a flux concentrator to facilitate high sensitivity in a compact size.
  - Procured high-performance NV-diamonds and shielding chamber.
  - Completed circuit-board package and optical fiber-based setup.
  - Will collect performance data and finalize reports.
- Potential Impact in the Field
  - Breakthrough in state-of-the-art sensitivity.
  - Improved reliability by reducing and isolating noises.
  - Enables rapid deployment if integrating with UAV platforms.
- Broad impact to DOD mission
  - Versatile sensing capabilities including electromagnetic fields [1-4], chemical [5-7], and audio signals [8].
  - Portable low-power designs enable remote and autonomous UXO detection.





### **Publications**

Presentations

- Young, et al., <u>Coherent Control of Nitrogen Vacancy Centers in Diamond</u> <u>using Broadband Micro-coil Antennas</u>, APS March meeting, 2025.
- De Leon, et al., Coherent Control of Quantum Spin Sensors for Biogeochemical Imaging, <u>APS CU\*iP Conference</u>, 2025
- One peer-reviewed publication in preparation.



### **Literature Cited**

- 1. Wolf, T., Neumann, P., Nakamura, K., Sumiya, H., Ohshima, T., Isoya, J., & Wrachtrup, J. (2015). Subpicotesla Diamond Magnetometry. Physical Review X, 5(4). And Erratum: Phys. Rev. X 13, 029903 (2023).
- 2. Clevenson, H., Pham, L. M., Teale, C., Johnson, K., Englund, D., & Braje, D. (2018). Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. Applied Physics Letters, 112(25).
- Patel, R. L., Zhou, L. Q., Frangeskou, A. C., Stimpson, G. A., Breeze, B. G., Nikitin, A., Dale, M. W., Nichols, E. C., Thornley, W., Green, B. L., Newton, M. E., Edmonds, A. M., Markham, M. L., Twitchen, D. J., & Morley, G. W. (2020). Subnanotesla Magnetometry with a Fiber-Coupled Diamond Sensor. Physical Review Applied, 14(4).
- 4. Graham, S. M., Rahman, A. T. M. A., Munn, L., Patel, R. L., Newman, A. J., Stephen, C. J., ... & Morley, G. W. (2023). Fiber-coupled diamond magnetometry with an unshielded sensitivity of 30 pT/Hz. Physical Review Applied, 19(4), 044042.
- 5. Glenn, D. R., Bucher, D. B., Lee, J., Lukin, M. D., Park, H., & Walsworth, R. L. (2018). High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature, 555(7696), 351-+.
- 6. Smits, J., et al., Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Science Advances, 2019. **5**(7).
- 7. Hao, Z., et al. Understanding Water Chemistry in a Submicron Scale Environment with Quantum Sensing. in Goldschmidt 2023 Conference. 2023. GOLDSCHMIDT.
- 8. Zhang, C., Dasari, D., Widmann, M., Meinel, J., Vorobyov, V., Kapitanova, P., Nenasheva, E., Nakamura, K., Sumiya, H., Onoda, S., Isoya, J., & Wrachtrup, J. (2022). Quantum-assisted distortion-free audio signal sensing. Nature Communications, 13(1).

